test_flash_attention.py 33.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/hopper/test_flash_attn.py
import itertools
import math
import os

import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat

apply_rotary_emb = None

13
14
15
16
17
18
19

def is_fa3_supported(device=None) -> bool:
    # FA3 can fail without a enough shared memory for a some shapes, currently
    #  only 8.0 and 8.7 have enough shared memory for all shapes
    #  https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-8-x
    #  now sgl-kernel only build fa3 for sm90a && cuda >= 12.4
    return (
20
        (torch.cuda.get_device_capability(device)[0] == 9)
21
22
23
24
25
        and (torch.version.cuda >= "12.4")
        # or torch.cuda.get_device_capability(device) == (8, 0)
        # or torch.cuda.get_device_capability(device) == (8, 7)
    )

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

DISABLE_BACKWARD = True
# For CI test, we close them to True.
# DISABLE_SPLIT = os.getenv("FLASH_ATTENTION_DISABLE_SPLIT", "FALSE") == "TRUE"
# DISABLE_PAGEDKV = os.getenv("FLASH_ATTENTION_DISABLE_PAGEDKV", "FALSE") == "TRUE"
# DISABLE_APPENDKV = os.getenv("FLASH_ATTENTION_DISABLE_APPENDKV", "FALSE") == "TRUE"
# DISABLE_LOCAL = os.getenv("FLASH_ATTENTION_DISABLE_LOCAL", "FALSE") == "TRUE"
# DISABLE_SOFTCAP = os.getenv("FLASH_ATTENTION_DISABLE_SOFTCAP", "FALSE") == "TRUE"
# DISABLE_PACKGQA = os.getenv("FLASH_ATTENTION_DISABLE_PACKGQA", "FALSE") == "TRUE"
# DISABLE_FP16 = os.getenv("FLASH_ATTENTION_DISABLE_FP16", "FALSE") == "TRUE"
# DISABLE_FP8 = (
#     os.getenv("FLASH_ATTENTION_DISABLE_FP8", "FALSE") == "TRUE"
#     or torch.cuda.get_device_capability("cuda")[0] < 9
# )

DISABLE_SPLIT = True
DISABLE_PAGEDKV = True
DISABLE_APPENDKV = True
DISABLE_LOCAL = True
DISABLE_SOFTCAP = True
DISABLE_PACKGQA = True
DISABLE_FP16 = True
DISABLE_FP8 = True


# Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/hopper/padding.py
def unpad_input(hidden_states, attention_mask, unused_mask=None):
    """
    Arguments:
        hidden_states: (batch, seqlen, ...)
        attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
        unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused.
    Return:
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask.
        indices: (total_nnz), the indices of masked tokens from the flattened input sequence.
        cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
        max_seqlen_in_batch: int
        seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask.
    """
    all_masks = (
        (attention_mask + unused_mask) if unused_mask is not None else attention_mask
    )
    seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32)
    used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
    # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
    # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
    # index with integer indices.
    return (
        rearrange(hidden_states, "b s ... -> (b s) ...")[indices],
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
        used_seqlens_in_batch,
    )


def generate_random_padding_mask(
    max_seqlen, batch_size, device, mode="random", zero_lengths=False
):
    assert mode in ["full", "random", "third"]
    if mode == "full":
        lengths = torch.full(
            (batch_size, 1), max_seqlen, device=device, dtype=torch.int32
        )
    elif mode == "random":
        lengths = torch.randint(
            max(0 if zero_lengths else 1, max_seqlen - 20),
            max_seqlen + 1,
            (batch_size, 1),
            device=device,
        )
    elif mode == "third":
        lengths = torch.randint(
            max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device
        )

    if zero_lengths:
        # Generate zero-lengths every 5 batches and the last batch.
        for i in range(batch_size):
            if i % 5 == 0:
                lengths[i] = 0
        lengths[-1] = 0
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size)
        < lengths
    )
    return padding_mask


def pad_input(hidden_states, indices, batch, seqlen):
    """
    Arguments:
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
        indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
        batch: int, batch size for the padded sequence.
        seqlen: int, maximum sequence length for the padded sequence.
    Return:
        hidden_states: (batch, seqlen, ...)
    """
    dim = hidden_states.shape[1:]
    output = torch.zeros(
        (batch * seqlen), *dim, device=hidden_states.device, dtype=hidden_states.dtype
    )
    output[indices] = hidden_states
    return rearrange(output, "(b s) ... -> b s ...", b=batch)


def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(-1, -1),  # -1 means infinite window size
    sink_token_length=0,
    query_padding_mask=None,
    key_padding_mask=None,
    key_leftpad=None,
    device=None,
):
    row_idx = rearrange(
        torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1"
    )
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    if key_leftpad is not None:
        key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
        col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
        col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    if window_size[0] < 0:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            torch.logical_and(
                col_idx < row_idx + sk - sq - window_size[0],
                col_idx >= sink_token_length,
            ),
        )


def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    key_leftpad=None,
    attn_bias=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    qv=None,
    q_descale=None,
    k_descale=None,
    v_descale=None,
    window_size=(-1, -1),  # -1 means infinite window size
    sink_token_length=0,
    softcap=0.0,
    upcast=True,
    reorder_ops=False,
    intermediate_dtype=None,
):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k: (batch_size, seqlen_k, nheads, head_dim)
        v: (batch_size, seqlen_k, nheads, head_dim_v)
        qv: (batch_size, seqlen_q, nheads, head_dim_v)
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
        causal: whether to apply causal masking
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim_v)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
    if causal:
        window_size = (window_size[0], 0)
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
        qv = qv.float() if qv is not None else None
    if q_descale is not None:
        q_descale = repeat(q_descale, "b h -> b 1 (h g) 1", g=q.shape[2] // k.shape[2])
        q = (q.float() * q_descale).to(q.dtype)
        qv = (qv.float() * q_descale).to(qv.dtype) if qv is not None else None
    if k_descale is not None:
        k = (k.float() * rearrange(k_descale, "b h -> b 1 h 1")).to(dtype=k.dtype)
    if v_descale is not None:
        v = (v.float() * rearrange(v_descale, "b h -> b 1 h 1")).to(dtype=v.dtype)
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
    d = q.shape[-1]
    dv = v.shape[-1]
    softmax_scale = 1.0 / math.sqrt(d if qv is None else d + dv)
    if not reorder_ops:
        scores = torch.einsum("bthd,bshd->bhts", q * softmax_scale, k)
    else:
        scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
    if qv is not None:
        scores = scores + torch.einsum("bthd,bshd->bhts", qv * softmax_scale, v)
    if softcap > 0:
        scores = torch.tanh(scores / softcap) * softcap
    if key_padding_mask is not None:
        scores.masked_fill_(
            rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf")
        )
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            sink_token_length,
            query_padding_mask,
            key_padding_mask,
            key_leftpad=key_leftpad,
            device=q.device,
        )
        scores.masked_fill_(local_mask, float("-inf"))
    if attn_bias is not None:
        scores = scores + attn_bias
    attention = torch.softmax(scores, dim=-1).to(v.dtype)
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(
            rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0
        )
    # Without this we might get NaN in dv
    if key_padding_mask is not None:
        attention = attention.masked_fill(
            rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0
        )
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if window_size[0] >= 0 or window_size[1] >= 0:
        attention = attention.masked_fill(
            torch.all(local_mask, dim=-1, keepdim=True), 0.0
        )
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
    else:
        attention_drop = attention
    if intermediate_dtype is not None:
        attention_drop = attention_drop.to(intermediate_dtype).to(attention_drop.dtype)
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
    if query_padding_mask is not None:
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


299
300
301
302
@pytest.mark.skipif(
    not is_fa3_supported(),
    reason="flash_attn at sgl-kernel is only supported on sm90 and above",
)
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
@pytest.mark.parametrize(
    "dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else [])
)
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
# @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
# @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
@pytest.mark.parametrize("mha_type", ["mha"])
@pytest.mark.parametrize("new_kv", [False] + ([True] if not DISABLE_APPENDKV else []))
# @pytest.mark.parametrize("new_kv", [True])
# @pytest.mark.parametrize(
#     "causal,local",
#     [(False, False), (True, False)] + ([(False, True)] if not DISABLE_LOCAL else []),
# )
# @pytest.mark.parametrize("causal,local", [(False, False), (True, False)])
@pytest.mark.parametrize("causal,local", [(False, False)])
@pytest.mark.parametrize(
    "seqlen_new_eq_seqlen_q", [True, False] if not DISABLE_APPENDKV else [True]
)
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
# @pytest.mark.parametrize("has_rotary_seqlens", [False, True])
@pytest.mark.parametrize("has_rotary_seqlens", [False])
@pytest.mark.parametrize(
    "rotary_interleaved", [False, True] if not DISABLE_APPENDKV else [False]
)
# @pytest.mark.parametrize("rotary_interleaved", [True])
@pytest.mark.parametrize(
    "rotary_fraction",
    (
        [0.0, 0.5, 1.0]
        if (not DISABLE_APPENDKV) and (apply_rotary_emb is not None)
        else [0.0]
    ),
)
# @pytest.mark.parametrize("rotary_fraction", [0.0])
@pytest.mark.parametrize(
    "page_size", [None] + ([1, 4, 128] if not DISABLE_PAGEDKV else [])
)
# @pytest.mark.parametrize("page_size", [None])
# @pytest.mark.parametrize("has_leftpad", [False, True])
@pytest.mark.parametrize("has_leftpad", [False])
# @pytest.mark.parametrize("has_batch_idx", [False, True])
@pytest.mark.parametrize("has_batch_idx", [False])
# @pytest.mark.parametrize("varlen_q", [False, True])
@pytest.mark.parametrize("varlen_q", [False])
# @pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
@pytest.mark.parametrize("d", [64])
# @pytest.mark.parametrize("d", [192])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 128),
        (1, 339),
        (3, 1024),
        (64, 800),
        (64, 256),
        (3, 799),
        (64, 2048),
        (16, 20000),
        # (1, 128 * 1024),
        # (16, 128 * 1024),
        (128, 128),
        (256, 512),  # To test appending KV with more than 1 block
        (2048, 3577),  # Enough tile to test persistent scheduler
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_kvcache(
    seqlen_q,
    seqlen_k,
    d,
    varlen_q,
    has_batch_idx,
    has_leftpad,
    page_size,
    rotary_fraction,
    rotary_interleaved,
    has_rotary_seqlens,
    seqlen_new_eq_seqlen_q,
    causal,
    local,
    new_kv,
    mha_type,
    dtype,
):
391
392
    from sgl_kernel.flash_attn import flash_attn_with_kvcache

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    if page_size is not None and seqlen_k % page_size != 0:
        pytest.skip()
    if seqlen_q > seqlen_k and new_kv:
        pytest.skip()
    if not new_kv and rotary_fraction > 0.0:
        pytest.skip()
    if rotary_fraction == 0.0 and has_rotary_seqlens:
        pytest.skip()
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    # batch_size = 1
    batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
    nheads = 6
    # nheads = 1
    # rotary_dim must be a multiple of 16, and must be <= d
    rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
    dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
    dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
    if dtype == torch.float8_e4m3fn:
        dv_vals = [d]
    for dv in dv_vals:
        has_qv = d == 64 and dv >= 256
        q = (
            torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref)
            .to(dtype)
            .to(dtype_ref)
        )
        if has_qv:
            qv = (
                torch.randn(
                    batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref
                )
                .to(dtype)
                .to(dtype_ref)
            )
        else:
            qv = None
        if varlen_q:
            query_padding_mask = generate_random_padding_mask(
                seqlen_q, batch_size, device, mode="random"
            )
            q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, *rest = unpad_input(
                q, query_padding_mask
            )
            output_pad_fn = lambda output_unpad: pad_input(
                output_unpad, indices_q, batch_size, seqlen_q
            )
            qv_unpad = (
                rearrange(qv, "b s ... -> (b s) ...")[indices_q] if has_qv else None
            )
        else:
            query_padding_mask = None
            q_unpad = q
            qv_unpad = qv
            cu_seqlens_q, max_seqlen_q = None, None
        # Put window_size after QKV randn so that window_size changes from test to test
        window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))

        seqlen_new = (
            seqlen_q
            if seqlen_new_eq_seqlen_q
            else torch.randint(1, seqlen_q + 1, (1,)).item()
        )
        cu_seqlens_k_new = None
        key_new_padding_mask = None
        if new_kv:
            k = (
                torch.randn(
                    batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype_ref
                )
                .to(dtype)
                .to(dtype_ref)
            )
            v = (
                torch.randn(
                    batch_size, seqlen_new, nheads_k, dv, device=device, dtype=dtype_ref
                )
                .to(dtype)
                .to(dtype_ref)
            )
            if varlen_q:  # k & v are also varlen
                key_new_padding_mask = generate_random_padding_mask(
                    seqlen_new, batch_size, device, mode="random"
                )
                k_unpad, indices_k, cu_seqlens_k_new, *rest = unpad_input(
                    k, key_new_padding_mask
                )
                v_unpad, *rest = unpad_input(v, key_new_padding_mask)
            else:
                k_unpad, v_unpad = k, v
        else:
            k, v, k_unpad, v_unpad = None, None, None, None
        if page_size is None:
            k_cache = (
                torch.randn(
                    batch_size_cache,
                    seqlen_k,
                    nheads_k,
                    d,
                    device=device,
                    dtype=dtype_ref,
                )
                .to(dtype)
                .to(dtype_ref)
            )
            v_cache = (
                torch.randn(
                    batch_size_cache,
                    seqlen_k,
                    nheads_k,
                    dv,
                    device=device,
                    dtype=dtype_ref,
                )
                .to(dtype)
                .to(dtype_ref)
            )
            page_table = None
        else:
            (
                k_cache,
                v_cache,
                page_table,
                k_cache_paged,
                v_cache_paged,
                num_blocks,
            ) = _generate_block_kvcache(
                seqlen_k,
                page_size,
                batch_size_cache,
                nheads_k,
                d,
                dv,
                device,
                dtype,
                dtype_ref,
            )
        cache_seqlens = torch.randint(
            0 if new_kv else 1,
            # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
            (
                (
                    seqlen_k
                    - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new)
                    + 1
                )
                if new_kv
                else (seqlen_k + 1)
            ),
            (batch_size,),
            dtype=torch.int32,
            device=device,
        )
        if has_leftpad:
            cache_leftpad = torch.cat(
                [
                    (
                        torch.randint(
                            0,
                            cache_seqlens[i].item(),
                            (1,),
                            dtype=torch.int32,
                            device=device,
                        )
                        if cache_seqlens[i].item() > 0
                        else torch.zeros(1, dtype=torch.int32, device=device)
                    )
                    for i in range(batch_size)
                ]
            )
        else:
            cache_leftpad = None
        if has_batch_idx:
            cache_batch_idx = torch.randperm(
                batch_size_cache, dtype=torch.int32, device=device
            )[:batch_size]
        else:
            cache_batch_idx = None
        arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
        cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
        if not new_kv:
            key_padding_mask = arange < cache_seqlens_expanded
        else:
            k_new_seqlens = (
                key_new_padding_mask.sum(-1, keepdims=True) if varlen_q else seqlen_new
            )
            key_padding_mask = arange < cache_seqlens_expanded + k_new_seqlens
        if has_leftpad:
            key_padding_mask = torch.logical_and(
                key_padding_mask,
                arange >= cache_leftpad.unsqueeze(-1).expand(-1, seqlen_k),
            )
        # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
        rotary_seqlens = cache_seqlens if not has_rotary_seqlens else cache_seqlens // 2
        if rotary_dim > 0:
            angle = (
                torch.rand(
                    seqlen_k if page_size is None else num_blocks * page_size,
                    rotary_dim // 2,
                    device=device,
                )
                * 2
                * math.pi
            )
            cos = torch.cos(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
            sin = torch.sin(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
            if causal or local:
                q_ro = apply_rotary_emb(
                    q,
                    cos,
                    sin,
                    seqlen_offsets=rotary_seqlens,
                    interleaved=rotary_interleaved,
                )
            else:
                q_ro = rearrange(
                    apply_rotary_emb(
                        rearrange(q, "b s h d -> b 1 (s h) d"),
                        cos,
                        sin,
                        seqlen_offsets=rotary_seqlens,
                        interleaved=rotary_interleaved,
                    ),
                    "b 1 (s h) d -> b s h d",
                    s=seqlen_q,
                )
            # q_ro = q
            k_ro = apply_rotary_emb(
                k,
                cos,
                sin,
                seqlen_offsets=rotary_seqlens,
                interleaved=rotary_interleaved,
            )
        else:
            cos, sin = None, None
            q_ro, k_ro = q, k
        # k_cache[:, 64:] = -1
        k_cache_ref = (
            k_cache if not has_batch_idx else k_cache[cache_batch_idx]
        ).clone()
        v_cache_ref = (
            v_cache if not has_batch_idx else v_cache[cache_batch_idx]
        ).clone()
        if new_kv:
            update_mask = torch.logical_and(
                cache_seqlens_expanded <= arange,
                arange < cache_seqlens_expanded + k_new_seqlens,
            )
            k_to_update = rearrange(k_ro, "b s ... -> (b s) ...")
            v_to_update = rearrange(v, "b s ... -> (b s) ...")
            if varlen_q:
                k_to_update = k_to_update[indices_k]
                v_to_update = v_to_update[indices_k]
            k_cache_ref[update_mask] = k_to_update
            v_cache_ref[update_mask] = v_to_update
        k_cache_rep = repeat(
            k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k
        )
        v_cache_rep = repeat(
            v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k
        )
        out_ref, _ = attention_ref(
            q_ro,
            k_cache_rep,
            v_cache_rep,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            qv=qv,
            window_size=window_size,
            key_leftpad=cache_leftpad,
        )
        out_pt, _ = attention_ref(
            q_ro,
            k_cache_rep,
            v_cache_rep,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            qv=qv,
            window_size=window_size,
            upcast=False,
            reorder_ops=True,
            key_leftpad=cache_leftpad,
            intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
        )
        q = q.to(dtype)
        q_unpad = q_unpad.to(dtype) if varlen_q else None
        k_cache = k_cache.to(dtype)
        v_cache = v_cache.to(dtype)
        k_cache_paged = k_cache_paged.to(dtype) if page_size is not None else None
        v_cache_paged = v_cache_paged.to(dtype) if page_size is not None else None
        k = k.to(dtype) if k is not None else None
        v = v.to(dtype) if v is not None else None
        k_unpad = k_unpad.to(dtype) if k_unpad is not None else None
        v_unpad = v_unpad.to(dtype) if v_unpad is not None else None
        qv = qv.to(dtype) if qv is not None else None
        qv_unpad = qv_unpad.to(dtype) if (varlen_q and qv is not None) else None
        cos = cos.to(dtype) if cos is not None else None
        sin = sin.to(dtype) if sin is not None else None
        k_cache_saved = k_cache.clone() if page_size is None else k_cache_paged.clone()
        v_cache_saved = v_cache.clone() if page_size is None else v_cache_paged.clone()
        num_splits_vals = [1, 0] if not DISABLE_SPLIT else [1]
        precompute_metadata_vals = [False]
        for num_splits, precompute_metadata in itertools.product(
            num_splits_vals, precompute_metadata_vals
        ):
            scheduler_metadata = None
            # Repeat to test metadata reuse
            for _ in range(1 if not precompute_metadata else 2):
                if page_size is None:
                    k_cache.copy_(k_cache_saved)
                    v_cache.copy_(v_cache_saved)
                else:
                    k_cache_paged.copy_(k_cache_saved)
                    v_cache_paged.copy_(v_cache_saved)
                out, lse, *rest = flash_attn_with_kvcache(
                    q if not varlen_q else q_unpad,
                    k_cache if page_size is None else k_cache_paged,
                    v_cache if page_size is None else v_cache_paged,
                    k if not new_kv or not varlen_q else k_unpad,
                    v if not new_kv or not varlen_q else v_unpad,
                    qv=qv if not varlen_q else qv_unpad,
                    rotary_cos=cos,
                    rotary_sin=sin,
                    cache_seqlens=cache_seqlens,
                    cache_batch_idx=cache_batch_idx,
                    cache_leftpad=cache_leftpad,
                    page_table=page_table,
                    cu_seqlens_q=cu_seqlens_q,
                    cu_seqlens_k_new=cu_seqlens_k_new,
                    max_seqlen_q=max_seqlen_q,
                    rotary_seqlens=rotary_seqlens,
                    causal=causal,
                    window_size=window_size,
                    rotary_interleaved=rotary_interleaved,
                    scheduler_metadata=scheduler_metadata,
                    num_splits=num_splits,
                    return_softmax_lse=True,
                )
                if varlen_q:
                    out = output_pad_fn(out)
                # out = flash_attn_with_kvcache(
                #     q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
                # )
                # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
                # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
                # m = qk.amax(-1, keepdim=True)
                # s_tmp = torch.exp((qk - m) / math.sqrt(d))
                # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
                # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
                # probs = torch.softmax(qk, dim=-1)
                print(f"Output max diff: {(out - out_ref).abs().max().item()}")
                print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
                print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
                print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
                # breakpoint()

                # Check that FlashAttention's numerical error is at most twice the numerical error
                # of a Pytorch implementation.
                if new_kv:
                    if page_size is None:
                        k_cache_select = (
                            k_cache.to(dtype_ref)
                            if not has_batch_idx
                            else k_cache.to(dtype_ref)[cache_batch_idx]
                        )
                        v_cache_select = (
                            v_cache.to(dtype_ref)
                            if not has_batch_idx
                            else v_cache.to(dtype_ref)[cache_batch_idx]
                        )
                    else:
                        k_cache_select = rearrange(
                            k_cache_paged.to(dtype_ref)[
                                (
                                    page_table
                                    if not has_batch_idx
                                    else page_table[cache_batch_idx]
                                ).flatten()
                            ],
                            "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                            b=batch_size,
                        )[:, :seqlen_k].to(dtype_ref)
                        v_cache_select = rearrange(
                            v_cache_paged.to(dtype_ref)[
                                (
                                    page_table
                                    if not has_batch_idx
                                    else page_table[cache_batch_idx]
                                ).flatten()
                            ],
                            "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                            b=batch_size,
                        )[:, :seqlen_k].to(dtype_ref)
                    k_cache_ref = k_cache_ref.to(dtype).to(dtype_ref)
                    v_cache_ref = v_cache_ref.to(dtype).to(dtype_ref)
                    if dtype is not torch.float8_e4m3fn:
                        assert torch.equal(v_cache_select, v_cache_ref)
                    else:
                        assert torch.allclose(
                            v_cache_select, v_cache_ref, rtol=1e-3, atol=1e-3
                        )
                    # breakpoint()
                    # if rotary_dim == 0 and dtype is not torch.float8_e4m3fn:
                    if rotary_dim == 0:
                        assert torch.equal(k_cache_select, k_cache_ref)
                    else:
                        # if not torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3):
                        #     breakpoint()
                        if dtype is not torch.float8_e4m3fn:
                            assert torch.allclose(
                                k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3
                            )
                        else:
                            assert torch.allclose(
                                k_cache_select, k_cache_ref, rtol=1e-1, atol=1e-1
                            )
                mult = 4 if dtype == torch.float8_e4m3fn else 2
                assert (out - out_ref).abs().max().item() <= mult * (
                    out_pt - out_ref
                ).abs().max().item() + 1e-5
                mult_mean = 3 if dtype == torch.float8_e4m3fn else 1.5
                assert (out - out_ref).abs().mean().item() <= mult_mean * (
                    out_pt - out_ref
                ).abs().mean().item()


def _generate_block_kvcache(
    seqlen_k, page_size, batch_size, nheads_k, d, dv, device, dtype, dtype_ref
):
    num_blocks = math.ceil(seqlen_k / page_size) * batch_size * 3
    k_cache_paged = (
        torch.randn(num_blocks, page_size, nheads_k, d, device=device, dtype=dtype_ref)
        .to(dtype)
        .to(dtype_ref)
    )
    v_cache_paged = (
        torch.randn(num_blocks, page_size, nheads_k, dv, device=device, dtype=dtype_ref)
        .to(dtype)
        .to(dtype_ref)
    )
    page_table = rearrange(
        torch.randperm(num_blocks, dtype=torch.int32, device=device),
        "(b nblocks) -> b nblocks",
        b=batch_size,
    )
    k_cache = rearrange(
        k_cache_paged[page_table.flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    v_cache = rearrange(
        v_cache_paged[page_table.flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    return k_cache, v_cache, page_table, k_cache_paged, v_cache_paged, num_blocks


if __name__ == "__main__":
    pytest.main([__file__])