native_api.ipynb 15 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
7
    "# SGLang Native APIs\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
9
    "Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce the following APIs:\n",
Chayenne's avatar
Chayenne committed
10
    "\n",
Chayenne's avatar
Chayenne committed
11
    "- `/generate` (text generation model)\n",
Chayenne's avatar
Chayenne committed
12
    "- `/get_model_info`\n",
13
    "- `/get_server_info`\n",
Chayenne's avatar
Chayenne committed
14
15
16
    "- `/health`\n",
    "- `/health_generate`\n",
    "- `/flush_cache`\n",
Chayenne's avatar
Chayenne committed
17
    "- `/update_weights`\n",
Chayenne's avatar
Chayenne committed
18
    "- `/encode`(embedding model)\n",
woodx's avatar
woodx committed
19
    "- `/v1/rerank`(cross encoder rerank model)\n",
20
    "- `/classify`(reward model)\n",
21
22
23
    "- `/start_expert_distribution_record`\n",
    "- `/stop_expert_distribution_record`\n",
    "- `/dump_expert_distribution_record`\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
24
    "- A full list of these APIs can be found at [http_server.py](https://github.com/sgl-project/sglang/blob/main/python/sglang/srt/entrypoints/http_server.py)\n",
Chayenne's avatar
Chayenne committed
25
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
26
    "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`.\n"
Chayenne's avatar
Chayenne committed
27
28
29
30
31
32
33
34
35
36
37
38
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
39
   "metadata": {},
Chayenne's avatar
Chayenne committed
40
41
   "outputs": [],
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
42
    "from sglang.test.doc_patch import launch_server_cmd\n",
43
44
45
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
46
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
47
48
    ")\n",
    "\n",
49
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
50
51
52
53
54
55
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
56
    "## Generate (text generation model)\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
57
    "Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](sampling_params.md)."
Chayenne's avatar
Chayenne committed
58
59
60
61
62
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
63
   "metadata": {},
Chayenne's avatar
Chayenne committed
64
65
   "outputs": [],
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
66
67
    "import requests\n",
    "\n",
68
    "url = f\"http://localhost:{port}/generate\"\n",
Chayenne's avatar
Chayenne committed
69
    "data = {\"text\": \"What is the capital of France?\"}\n",
Chayenne's avatar
Chayenne committed
70
71
    "\n",
    "response = requests.post(url, json=data)\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
72
    "print_highlight(response.json())"
Chayenne's avatar
Chayenne committed
73
74
75
76
77
78
79
80
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Model Info\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
81
    "Get the information of the model.\n",
Chayenne's avatar
Chayenne committed
82
83
    "\n",
    "- `model_path`: The path/name of the model.\n",
Chayenne's avatar
Chayenne committed
84
    "- `is_generation`: Whether the model is used as generation model or embedding model.\n",
85
    "- `tokenizer_path`: The path/name of the tokenizer.\n",
86
87
    "- `preferred_sampling_params`: The default sampling params specified via `--preferred-sampling-params`. `None` is returned in this example as we did not explicitly configure it in server args.\n",
    "- `weight_version`: This field contains the version of the model weights. This is often used to track changes or updates to the model’s trained parameters."
Chayenne's avatar
Chayenne committed
88
89
90
91
92
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
93
   "metadata": {},
Chayenne's avatar
Chayenne committed
94
95
   "outputs": [],
   "source": [
96
    "url = f\"http://localhost:{port}/get_model_info\"\n",
Chayenne's avatar
Chayenne committed
97
98
99
100
    "\n",
    "response = requests.get(url)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
101
    "assert response_json[\"model_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
102
    "assert response_json[\"is_generation\"] is True\n",
103
    "assert response_json[\"tokenizer_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
104
    "assert response_json[\"preferred_sampling_params\"] is None\n",
105
106
107
108
109
    "assert response_json.keys() == {\n",
    "    \"model_path\",\n",
    "    \"is_generation\",\n",
    "    \"tokenizer_path\",\n",
    "    \"preferred_sampling_params\",\n",
110
    "    \"weight_version\",\n",
111
    "}"
Chayenne's avatar
Chayenne committed
112
113
114
115
116
117
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
118
119
120
121
122
123
    "## Get Server Info\n",
    "Gets the server information including CLI arguments, token limits, and memory pool sizes.\n",
    "- Note: `get_server_info` merges the following deprecated endpoints:\n",
    "  - `get_server_args`\n",
    "  - `get_memory_pool_size` \n",
    "  - `get_max_total_num_tokens`"
Chayenne's avatar
Chayenne committed
124
125
126
127
128
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
129
   "metadata": {},
Chayenne's avatar
Chayenne committed
130
131
   "outputs": [],
   "source": [
132
    "url = f\"http://localhost:{port}/get_server_info\"\n",
Chayenne's avatar
Chayenne committed
133
134
135
136
137
138
139
140
141
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
142
143
144
    "## Health Check\n",
    "- `/health`: Check the health of the server.\n",
    "- `/health_generate`: Check the health of the server by generating one token."
Chayenne's avatar
Chayenne committed
145
146
147
148
149
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
150
   "metadata": {},
Chayenne's avatar
Chayenne committed
151
152
   "outputs": [],
   "source": [
153
    "url = f\"http://localhost:{port}/health_generate\"\n",
Chayenne's avatar
Chayenne committed
154
    "\n",
155
    "response = requests.get(url)\n",
Chayenne's avatar
Chayenne committed
156
157
158
159
160
161
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
162
   "metadata": {},
Chayenne's avatar
Chayenne committed
163
164
   "outputs": [],
   "source": [
165
    "url = f\"http://localhost:{port}/health\"\n",
Chayenne's avatar
Chayenne committed
166
167
168
169
170
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
171
172
173
174
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
175
    "## Flush Cache\n",
176
    "\n",
177
    "Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
178
179
180
181
182
183
184
185
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
186
    "url = f\"http://localhost:{port}/flush_cache\"\n",
187
    "\n",
188
    "response = requests.post(url)\n",
189
190
191
    "print_highlight(response.text)"
   ]
  },
Chayenne's avatar
Chayenne committed
192
193
194
195
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
196
    "## Update Weights From Disk\n",
Chayenne's avatar
Chayenne committed
197
    "\n",
Chayenne's avatar
Chayenne committed
198
199
200
    "Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.\n",
    "\n",
    "SGLang support `update_weights_from_disk` API for continuous evaluation during training (save checkpoint to disk and update weights from disk).\n"
Chayenne's avatar
Chayenne committed
201
202
203
204
205
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
206
   "metadata": {},
Chayenne's avatar
Chayenne committed
207
208
209
210
   "outputs": [],
   "source": [
    "# successful update with same architecture and size\n",
    "\n",
211
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
212
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct\"}\n",
Chayenne's avatar
Chayenne committed
213
214
215
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)\n",
216
    "assert response.json()[\"success\"] is True\n",
217
    "assert response.json()[\"message\"] == \"Succeeded to update model weights.\""
Chayenne's avatar
Chayenne committed
218
219
220
221
222
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
223
   "metadata": {},
Chayenne's avatar
Chayenne committed
224
225
   "outputs": [],
   "source": [
226
    "# failed update with different parameter size or wrong name\n",
Chayenne's avatar
Chayenne committed
227
    "\n",
228
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
229
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct-wrong\"}\n",
Chayenne's avatar
Chayenne committed
230
231
232
233
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
234
    "assert response_json[\"success\"] is False\n",
Chayenne's avatar
Chayenne committed
235
    "assert response_json[\"message\"] == (\n",
236
    "    \"Failed to get weights iterator: \"\n",
237
    "    \"qwen/qwen2.5-0.5b-instruct-wrong\"\n",
238
    "    \" (repository not found).\"\n",
Chayenne's avatar
Chayenne committed
239
240
241
    ")"
   ]
  },
242
243
244
245
246
247
248
249
250
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
Chayenne's avatar
Chayenne committed
251
252
253
254
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
255
    "## Encode (embedding model)\n",
Chayenne's avatar
Chayenne committed
256
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
257
    "Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.ipynb) and will raise an error for generation models.\n",
Chayenne's avatar
Chayenne committed
258
    "Therefore, we launch a new server to server an embedding model."
Chayenne's avatar
Chayenne committed
259
260
261
262
263
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
264
   "metadata": {},
Chayenne's avatar
Chayenne committed
265
266
   "outputs": [],
   "source": [
267
    "embedding_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
268
    "    \"\"\"\n",
269
    "python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \\\n",
270
    "    --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
271
272
273
    "\"\"\"\n",
    ")\n",
    "\n",
274
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
275
276
277
278
279
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
280
   "metadata": {},
Chayenne's avatar
Chayenne committed
281
282
283
284
   "outputs": [],
   "source": [
    "# successful encode for embedding model\n",
    "\n",
285
    "url = f\"http://localhost:{port}/encode\"\n",
286
    "data = {\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"text\": \"Once upon a time\"}\n",
Chayenne's avatar
Chayenne committed
287
288
289
290
291
292
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")"
   ]
  },
293
294
295
296
297
298
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
299
    "terminate_process(embedding_process)"
300
301
   ]
  },
woodx's avatar
woodx committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## v1/rerank (cross encoder rerank model)\n",
    "Rerank a list of documents given a query using a cross-encoder model. Note that this API is only available for cross encoder model like [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) with `attention-backend` `triton` and `torch_native`.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "reranker_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path BAAI/bge-reranker-v2-m3 \\\n",
    "    --host 0.0.0.0 --disable-radix-cache --chunked-prefill-size -1 --attention-backend triton --is-embedding\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# compute rerank scores for query and documents\n",
    "\n",
    "url = f\"http://localhost:{port}/v1/rerank\"\n",
    "data = {\n",
    "    \"model\": \"BAAI/bge-reranker-v2-m3\",\n",
    "    \"query\": \"what is panda?\",\n",
    "    \"documents\": [\n",
    "        \"hi\",\n",
    "        \"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.\",\n",
    "    ],\n",
    "}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "for item in response_json:\n",
    "    print_highlight(f\"Score: {item['score']:.2f} - Document: '{item['document']}'\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(reranker_process)"
   ]
  },
Chayenne's avatar
Chayenne committed
359
360
361
362
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
363
    "## Classify (reward model)\n",
Chayenne's avatar
Chayenne committed
364
    "\n",
365
    "SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations."
Chayenne's avatar
Chayenne committed
366
367
368
369
370
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
371
   "metadata": {},
Chayenne's avatar
Chayenne committed
372
373
374
375
376
   "outputs": [],
   "source": [
    "# Note that SGLang now treats embedding models and reward models as the same type of models.\n",
    "# This will be updated in the future.\n",
    "\n",
377
    "reward_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
378
    "    \"\"\"\n",
379
    "python3 -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
380
381
382
    "\"\"\"\n",
    ")\n",
    "\n",
383
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
384
385
386
387
388
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
389
   "metadata": {},
Chayenne's avatar
Chayenne committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "PROMPT = (\n",
    "    \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n",
    ")\n",
    "\n",
    "RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n",
    "RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n",
    "\n",
    "CONVS = [\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n",
    "]\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n",
    "prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n",
    "\n",
409
    "url = f\"http://localhost:{port}/classify\"\n",
Chayenne's avatar
Chayenne committed
410
    "data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n",
Chayenne's avatar
Chayenne committed
411
412
413
414
415
416
    "\n",
    "responses = requests.post(url, json=data).json()\n",
    "for response in responses:\n",
    "    print_highlight(f\"reward: {response['embedding'][0]}\")"
   ]
  },
Chayenne's avatar
Chayenne committed
417
418
  {
   "cell_type": "code",
419
420
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
421
422
   "outputs": [],
   "source": [
423
    "terminate_process(reward_process)"
Chayenne's avatar
Chayenne committed
424
   ]
425
  },
426
427
428
429
430
431
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Capture expert selection distribution in MoE models\n",
    "\n",
432
433
434
    "SGLang Runtime supports recording the number of times an expert is selected in a MoE model run for each expert in the model. This is useful when analyzing the throughput of the model and plan for optimization.\n",
    "\n",
    "*Note: We only print out the first 10 lines of the csv below for better readability. Please adjust accordingly if you want to analyze the results more deeply.*"
435
436
437
438
439
440
441
442
443
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "expert_record_server_process, port = launch_server_cmd(\n",
444
    "    \"python3 -m sglang.launch_server --model-path Qwen/Qwen1.5-MoE-A2.7B --host 0.0.0.0 --expert-distribution-recorder-mode stat\"\n",
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(f\"http://localhost:{port}/start_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "url = f\"http://localhost:{port}/generate\"\n",
    "data = {\"text\": \"What is the capital of France?\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.json())\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/stop_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/dump_expert_distribution_record\")\n",
469
    "print_highlight(response)"
470
471
472
473
474
475
476
477
478
479
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(expert_record_server_process)"
   ]
Chayenne's avatar
Chayenne committed
480
481
482
483
484
485
486
487
488
489
490
491
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
492
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
493
494
495
496
497
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}