llava.py 14.4 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
"""Inference-only LLaVa model compatible with HuggingFace weights."""
shiyi.c_98's avatar
shiyi.c_98 committed
2
from typing import List, Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
3
4
5
6
7

import numpy as np
import torch
from sglang.srt.managers.router.infer_batch import ForwardMode
from sglang.srt.managers.router.model_runner import InputMetadata
shiyi.c_98's avatar
shiyi.c_98 committed
8
9
10
11
12
from sglang.srt.mm_utils import (
    get_anyres_image_grid_shape,
    unpad_image,
    unpad_image_shape,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
13
14
from sglang.srt.models.llama2 import LlamaForCausalLM
from torch import nn
shiyi.c_98's avatar
shiyi.c_98 committed
15
from transformers import CLIPVisionModel, LlamaConfig, LlavaConfig
Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from transformers.models.llava.modeling_llava import LlavaMultiModalProjector
from vllm.model_executor.layers.linear import LinearMethodBase
from vllm.model_executor.weight_utils import (
    default_weight_loader,
    hf_model_weights_iterator,
)


class LlavaLlamaForCausalLM(nn.Module):
    def __init__(
        self,
        config: LlavaConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.vision_tower = None
        self.config.vision_config.hidden_size = config.mm_hidden_size
        self.config.text_config.hidden_size = config.hidden_size
        self.multi_modal_projector = LlavaMultiModalProjector(config)
        self.language_model = LlamaForCausalLM(config, linear_method)
37
        if "unpad" in getattr(config, "mm_patch_merge_type", ""):
shiyi.c_98's avatar
shiyi.c_98 committed
38
            self.language_model.model.image_newline = nn.Parameter(
39
40
                torch.empty(config.text_config.hidden_size, dtype=torch.float16)
            )
shiyi.c_98's avatar
shiyi.c_98 committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

    def pad_input_ids(self, input_ids, pad_value, pt_shape=None, image_size=None):
        new_image_feature_len = self.image_feature_len
        # now only support spatial_unpad + anyres
        if self.mm_patch_merge_type.startswith("spatial"):
            height = width = self.num_patches_per_side
            if pt_shape[0] > 1:
                if self.image_aspect_ratio == "anyres":
                    num_patch_width, num_patch_height = get_anyres_image_grid_shape(
                        image_size,
                        self.image_grid_pinpoints,
                        self.vision_tower.config.image_size,
                    )
                if "unpad" in self.mm_patch_merge_type:
                    h = num_patch_height * height
                    w = num_patch_width * width
                    new_h, new_w = unpad_image_shape(h, w, image_size)
                    new_image_feature_len += new_h * (new_w + 1)
Lianmin Zheng's avatar
Lianmin Zheng committed
59
60

        pad_ids = pad_value * (
shiyi.c_98's avatar
shiyi.c_98 committed
61
            (new_image_feature_len + len(pad_value)) // len(pad_value)
Lianmin Zheng's avatar
Lianmin Zheng committed
62
63
64
65
66
        )
        offset = input_ids.index(self.config.image_token_index)
        # old_len + pad_len - 1, because we need to remove image_token_id
        new_input_ids = (
            input_ids[:offset]
shiyi.c_98's avatar
shiyi.c_98 committed
67
            + pad_ids[:new_image_feature_len]
Lianmin Zheng's avatar
Lianmin Zheng committed
68
69
70
71
            + input_ids[offset + 1 :]
        )
        return new_input_ids, offset

shiyi.c_98's avatar
shiyi.c_98 committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    def encode_images(self, pixel_values: torch.Tensor) -> torch.Tensor:
        image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
        # NOTE: This is not memory efficient. (output_hidden_states=True) will save all the hidden stated.

        selected_image_feature = image_outputs.hidden_states[self.vision_feature_layer]
        if self.vision_feature_select_strategy in ["default", "patch"]:
            selected_image_feature = selected_image_feature[:, 1:]
        elif self.vision_feature_select_strategy == "full":
            selected_image_feature = selected_image_feature
        else:
            raise ValueError(
                f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
            )
        image_features = self.multi_modal_projector(selected_image_feature)

        return image_features

Lianmin Zheng's avatar
Lianmin Zheng committed
89
90
91
92
93
94
    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
        pixel_values: Optional[List[Optional[np.array]]] = None,
shiyi.c_98's avatar
shiyi.c_98 committed
95
        image_sizes: Optional[List[List[int]]] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        image_offsets: Optional[List[int]] = None,
    ) -> torch.Tensor:
        if input_metadata.forward_mode == ForwardMode.EXTEND:
            bs = input_metadata.batch_size

            # Embed text input
            input_embeds = self.language_model.model.embed_tokens(input_ids)

            # Embed vision input
            need_vision = (
                (positions[input_metadata.extend_start_loc] < self.image_feature_len)
                .cpu()
                .numpy()
            )
            # FIXME: We need to substract the length of the system prompt
            has_pixel = np.array([pixel_values[i] is not None for i in range(bs)])
            need_vision = need_vision & has_pixel

            if need_vision.any():
                pixel_values = torch.tensor(
                    np.array([pixel_values[i] for i in range(bs) if need_vision[i]]),
                    device=self.vision_tower.device,
                )

shiyi.c_98's avatar
shiyi.c_98 committed
120
121
122
123
124
125
126
127
128
129
130
                ########## Encode Image ########

                if pixel_values.ndim == 5:
                    # llava-hd: BS, num_patch, C=3, H=336, W=336, num_patch obtained from process_images
                    concat_images = torch.cat(
                        [image for image in pixel_values], dim=0
                    )  # ndim=4
                    image_features = self.encode_images(concat_images)
                    split_sizes = [image.shape[0] for image in pixel_values]
                    image_features = torch.split(image_features, split_sizes, dim=0)
                    # hd image_features: BS, num_patch, 576, 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
131
                else:
shiyi.c_98's avatar
shiyi.c_98 committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
                    # normal pixel: BS, C=3, H=336, W=336
                    image_features = self.encode_images(pixel_values)
                    # image_features: BS, 576, 4096

                if self.mm_patch_merge_type.startswith("spatial"):
                    new_image_features = []
                    for image_idx, image_feature in enumerate(image_features):
                        if image_feature.shape[0] > 1:
                            base_image_feature = image_feature[0]
                            image_feature = image_feature[1:]
                            height = width = self.num_patches_per_side
                            assert height * width == base_image_feature.shape[0]
                            if self.image_aspect_ratio == "anyres":
                                (
                                    num_patch_width,
                                    num_patch_height,
                                ) = get_anyres_image_grid_shape(
                                    image_sizes[image_idx],
                                    self.image_grid_pinpoints,
                                    self.vision_tower.config.image_size,
                                )
                                image_feature = image_feature.view(
                                    num_patch_height, num_patch_width, height, width, -1
                                )
                            else:
                                raise NotImplementedError
                            if "unpad" in self.mm_patch_merge_type:
                                image_feature = image_feature.permute(
                                    4, 0, 2, 1, 3
                                ).contiguous()
                                image_feature = image_feature.flatten(1, 2).flatten(
                                    2, 3
                                )
                                image_feature = unpad_image(
                                    image_feature, image_sizes[image_idx]
                                )
                                image_feature = torch.cat(
                                    (
                                        image_feature,
                                        self.language_model.model.image_newline[
                                            :, None, None
                                        ].expand(*image_feature.shape[:-1], 1),
                                    ),
                                    dim=-1,
                                )
                                image_feature = image_feature.flatten(1, 2).transpose(
                                    0, 1
                                )
                            else:
                                image_feature = image_feature.permute(
                                    0, 2, 1, 3, 4
                                ).contiguous()
                                image_feature = image_feature.flatten(0, 3)
                            image_feature = torch.cat(
                                (base_image_feature, image_feature), dim=0
                            )
                        else:
                            image_feature = image_feature[0]
                            if "unpad" in self.mm_patch_merge_type:
                                image_feature = torch.cat(
                                    (
                                        image_feature,
                                        self.language_model.model.image_newline[None],
                                    ),
                                    dim=0,
                                )
                        new_image_features.append(image_feature)
                    image_features = new_image_features
Lianmin Zheng's avatar
Lianmin Zheng committed
200
201
202
203
204
205
206
207

                extend_start_loc_cpu = input_metadata.extend_start_loc.cpu().numpy()
                pt = 0
                for i in range(bs):
                    if not need_vision[i]:
                        continue

                    start_idx = extend_start_loc_cpu[i]
shiyi.c_98's avatar
shiyi.c_98 committed
208
                    pad_len, pad_dim = image_features[pt].shape  # 576, 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
                    dim = input_embeds.shape[1]
                    assert (
                        pad_dim == dim
                    ), "invalid pad_dim={}, input_embed_dim={}!".format(pad_dim, dim)
                    # Fill in the placeholder for the image
                    try:
                        input_embeds[
                            start_idx
                            + image_offsets[i] : start_idx
                            + image_offsets[i]
                            + pad_len
                        ] = image_features[pt]
                    except RuntimeError as e:
                        print(f"RuntimeError in llava image encoding: {e}")
                        print(input_embeds.shape)
                        print(start_idx, image_offsets[i])
                    pt += 1

            return self.language_model(
                input_embeds, positions, input_metadata, skip_embed=True
            )
        elif input_metadata.forward_mode == ForwardMode.DECODE:
            return self.language_model(
                input_ids, positions, input_metadata, skip_embed=False
            )

    def load_weights(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
        load_format: str = "auto",
        revision: Optional[str] = None,
    ):
        # load clip vision model by cfg['mm_vision_tower']:
        #   huggingface_name or path_of_clip_relative_to_llava_model_dir
        vision_path = self.config.mm_vision_tower
        self.vision_tower = CLIPVisionModel.from_pretrained(
            vision_path, torch_dtype=torch.float16
        ).cuda()
        self.vision_tower.eval()

        self.vision_feature_layer = self.config.mm_vision_select_layer
        self.vision_feature_select_strategy = self.config.mm_vision_select_feature
        self.image_size = self.vision_tower.config.image_size
        self.patch_size = self.vision_tower.config.patch_size
shiyi.c_98's avatar
shiyi.c_98 committed
254
255
256
257
258

        self.mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
        self.image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
        self.image_grid_pinpoints = getattr(self.config, "image_grid_pinpoints", None)

Lianmin Zheng's avatar
Lianmin Zheng committed
259
260
261
262
263
264
265
266
267
268
269
270
271
        self.image_feature_len = int((self.image_size / self.patch_size) ** 2)
        if self.vision_feature_select_strategy == "patch":
            pass
        elif self.vision_feature_select_strategy == "cls_patch":
            self.image_feature_len += 1
        else:
            raise ValueError(f"Unexpected select feature: {self.select_feature}")

        # load mm_projector
        # TODO: support TP?
        projector_weights = {
            "model.mm_projector.0": "multi_modal_projector.linear_1",
            "model.mm_projector.2": "multi_modal_projector.linear_2",
shiyi.c_98's avatar
shiyi.c_98 committed
272
            "model.vision_tower.vision_tower": "vision_tower",  # Update the vision tower weights if we find them in the checkpoint (it may be finetuned).
Lianmin Zheng's avatar
Lianmin Zheng committed
273
274
275
276
277
278
        }
        params_dict = dict(self.named_parameters())
        for name, loaded_weight in hf_model_weights_iterator(
            model_name_or_path, cache_dir, load_format, revision
        ):
            # FIXME: why projector weights read two times?
shiyi.c_98's avatar
shiyi.c_98 committed
279
            if "projector" in name or "vision_tower" in name:
Lianmin Zheng's avatar
Lianmin Zheng committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
                for weight_name, param_name in projector_weights.items():
                    if weight_name in name:
                        name = name.replace(weight_name, param_name)
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)

        # load language model
        self.language_model.load_weights(
            model_name_or_path, cache_dir, load_format, revision
        )

        monkey_path_clip_vision_embed_forward()

shiyi.c_98's avatar
shiyi.c_98 committed
294
295
296
297
    @property
    def num_patches_per_side(self):
        return self.image_size // self.patch_size

Lianmin Zheng's avatar
Lianmin Zheng committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

first_call = True


def clip_vision_embed_forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
    batch_size = pixel_values.shape[0]

    # Move this conv layer to CPU to avoid a bug in torch >= 2.1 on A10G.
    global first_call
    if first_call:
        self.patch_embedding.cpu().float()
        first_call = False
    pixel_values = pixel_values.to(dtype=torch.float32, device="cpu")
    patch_embeds = self.patch_embedding(pixel_values).cuda().half()

    patch_embeds = patch_embeds.flatten(2).transpose(1, 2)

    class_embeds = self.class_embedding.expand(batch_size, 1, -1)
    embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
    embeddings = embeddings + self.position_embedding(self.position_ids)
    return embeddings


def monkey_path_clip_vision_embed_forward():
    import transformers

    setattr(
        transformers.models.clip.modeling_clip.CLIPVisionEmbeddings,
        "forward",
        clip_vision_embed_forward,
    )