common_extension.cc 9.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
15
#include <ATen/core/dispatch/Dispatcher.h>
16
#include <torch/all.h>
17
18
#include <torch/library.h>

19
#include "sgl_kernel_ops.h"
20

21
TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
22
23
24
  /*
   * From csrc/allreduce
   */
25
26
27
28

  m.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta);
  m.def("register_graph_buffers", &register_graph_buffers);
  m.def("dispose", &dispose);
29
30
  m.def("meta_size", &meta_size);
  m.def("register_buffer", &register_buffer);
31
32

  m.def(
33
34
      "init_custom_ar(int[] ipc_tensors, Tensor rank_data, "
      "int rank, bool full_nvlink) -> int");
35
36
  m.impl("init_custom_ar", torch::kCUDA, &init_custom_ar);

37
38
39
  m.def(
      "all_reduce(int fa, Tensor inp, Tensor! out, int reg_buffer, "
      "int reg_buffer_sz_bytes) -> ()");
40
  m.impl("all_reduce", torch::kCUDA, &all_reduce);
41
42
43
  /*
   * From csrc/attention
   */
44
45
46
47
  m.def(
      "lightning_attention_decode(Tensor q, Tensor k, Tensor v, Tensor past_kv, Tensor slope, Tensor! output, Tensor! "
      "new_kv) -> ()");
  m.impl("lightning_attention_decode", torch::kCUDA, &lightning_attention_decode);
48

49
50
51
  /*
   * From csrc/elementwise
   */
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  m.def("rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, int cuda_stream) -> ()");
  m.impl("rmsnorm", torch::kCUDA, &rmsnorm);

  m.def("fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps) -> ()");
  m.impl("fused_add_rmsnorm", torch::kCUDA, &sgl_fused_add_rmsnorm);

  m.def("gemma_rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, int cuda_stream) -> ()");
  m.impl("gemma_rmsnorm", torch::kCUDA, &gemma_rmsnorm);

  m.def("gemma_fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, int cuda_stream) -> ()");
  m.impl("gemma_fused_add_rmsnorm", torch::kCUDA, &gemma_fused_add_rmsnorm);

  m.def("silu_and_mul(Tensor! out, Tensor input, int cuda_stream) -> ()");
  m.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);

  m.def("gelu_tanh_and_mul(Tensor! out, Tensor input, int cuda_stream) -> ()");
  m.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);

  m.def("gelu_and_mul(Tensor! out, Tensor input, int cuda_stream) -> ()");
  m.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);

  m.def(
      "apply_rope_pos_ids_cos_sin_cache(Tensor q, Tensor k, Tensor! q_rope, Tensor! k_rope, Tensor cos_sin_cache, "
      "Tensor pos_ids, bool interleave, int cuda_stream) -> ()");
  m.impl("apply_rope_pos_ids_cos_sin_cache", torch::kCUDA, &apply_rope_pos_ids_cos_sin_cache);
77

78
79
80
  /*
   * From csrc/gemm
   */
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  m.def("awq_dequantize(Tensor qweight, Tensor scales, Tensor qzeros) -> Tensor");
  m.impl("awq_dequantize", torch::kCUDA, &awq_dequantize);

  m.def(
      "int8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("int8_scaled_mm", torch::kCUDA, &int8_scaled_mm);

  m.def(
      "fp8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("fp8_scaled_mm", torch::kCUDA, &fp8_scaled_mm);

  m.def(
      "fp8_blockwise_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype) -> "
      "Tensor");
  m.impl("fp8_blockwise_scaled_mm", torch::kCUDA, &fp8_blockwise_scaled_mm);

  m.def(
      "sgl_per_token_group_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
      " float eps, float fp8_min, float fp8_max) -> ()");
  m.impl("sgl_per_token_group_quant_fp8", torch::kCUDA, &sgl_per_token_group_quant_fp8);

  m.def(
      "sgl_per_token_group_quant_int8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
      " float eps, float int8_min, float int8_max) -> ()");
  m.impl("sgl_per_token_group_quant_int8", torch::kCUDA, &sgl_per_token_group_quant_int8);

  m.def("sgl_per_tensor_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, bool is_static) -> ()");
  m.impl("sgl_per_tensor_quant_fp8", torch::kCUDA, &sgl_per_tensor_quant_fp8);

  m.def("sgl_per_token_quant_fp8(Tensor input, Tensor output_q, Tensor output_s) -> ()");
  m.impl("sgl_per_token_quant_fp8", torch::kCUDA, &sgl_per_token_quant_fp8);

  m.def(
      "cublas_grouped_gemm(Tensor[] inputs, Tensor[] weights, Tensor[] outputs,"
      " ScalarType out_dtype, int cublas_handle, int cuda_stream) -> ()");
  m.impl("cublas_grouped_gemm", torch::kCUDA, &cublas_grouped_gemm);

  m.def(
      "cutlass_scaled_fp4_mm(Tensor! out, Tensor a, Tensor b,"
      "                      Tensor block_scale_a, Tensor block_scale_b,"
      "                      Tensor alpha) -> ()");
  m.impl("cutlass_scaled_fp4_mm", torch::kCUDA, &cutlass_scaled_fp4_mm);

  m.def(
      "scaled_fp4_quant(Tensor! output, Tensor! input,"
      "                 Tensor! output_scale, Tensor! input_scale) -> ()");
  m.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
Trevor Morris's avatar
Trevor Morris committed
130

131
132
133
  /*
   * From csrc/moe
   */
134
135
136
137
138
139
140
141
142
  m.def(
      "moe_align_block_size(Tensor topk_ids, int num_experts, int block_size, Tensor! sorted_token_ids, Tensor! "
      "experts_ids, Tensor! num_tokens_post_pad, Tensor! token_cnts_buffer, Tensor! cumsum_buffer) -> ()");
  m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);

  m.def(
      "topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor! "
      "token_expert_indices, Tensor gating_output) -> ()");
  m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
143

144
145
146
147
148
  m.def(
      "moe_fused_gate(Tensor input, Tensor bias, int num_expert_group, int topk_group, int topk) -> "
      "(Tensor[])");
  m.impl("moe_fused_gate", torch::kCUDA, &moe_fused_gate);

149
150
151
  /*
   * From csrc/speculative
   */
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  m.def(
      "tree_speculative_sampling_target_only(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "Tensor uniform_samples, Tensor target_probs, Tensor draft_probs, "
      "float threshold_single, float threshold_acc, "
      "bool deterministic, int cuda_stream) -> ()");
  m.impl("tree_speculative_sampling_target_only", torch::kCUDA, &tree_speculative_sampling_target_only);

  m.def(
      "verify_tree_greedy(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "Tensor target_predict, int cuda_stream) -> ()");
  m.impl("verify_tree_greedy", torch::kCUDA, &verify_tree_greedy);

  m.def(
      "build_tree_kernel_efficient(Tensor parent_list, Tensor selected_index, Tensor verified_seq_len, "
      "Tensor! tree_mask, Tensor! positions, Tensor! retrive_index, Tensor! retrive_next_token, "
      "Tensor! retrive_next_sibling, int topk, int depth, int draft_token_num) -> ()");
  m.impl("build_tree_kernel_efficient", torch::kCUDA, &build_tree_kernel_efficient);

  m.def("segment_packbits(Tensor x, Tensor input_indptr, Tensor output_indptr, Tensor! y, int cuda_stream) -> ()");
  m.impl("segment_packbits", torch::kCUDA, &segment_packbits);
174

175
176
177
  /*
   * From FlashInfer
   */
Yineng Zhang's avatar
Yineng Zhang committed
178
179
180
181
  m.def(
      "bmm_fp8(Tensor A, Tensor B, Tensor! D, Tensor A_scale, Tensor B_scale, Tensor workspace_buffer, int "
      "cublas_handle, int cuda_stream) -> ()");
  m.impl("bmm_fp8", torch::kCUDA, &bmm_fp8);
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

  m.def(
      "min_p_sampling_from_probs(Tensor probs, Tensor uniform_samples, Tensor! samples, Tensor? maybe_min_p_arr, float "
      "min_p_val, bool deterministic, int cuda_stream) -> ()");
  m.impl("min_p_sampling_from_probs", torch::kCUDA, &min_p_sampling_from_probs);

  m.def(
      "top_k_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_k_arr, int top_k_val, int "
      "cuda_stream) -> ()");
  m.impl("top_k_renorm_probs", torch::kCUDA, &top_k_renorm_probs);

  m.def(
      "top_p_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_p_arr, float top_p_val, int "
      "cuda_stream) -> ()");
  m.impl("top_p_renorm_probs", torch::kCUDA, &top_p_renorm_probs);

  m.def(
      "top_k_top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples, Tensor! samples, Tensor! success, Tensor? "
      "maybe_top_k_arr, float top_k_val, Tensor? maybe_top_p_arr, float top_p_val, bool deterministic, int "
      "cuda_stream) -> ()");
  m.impl("top_k_top_p_sampling_from_probs", torch::kCUDA, &top_k_top_p_sampling_from_probs);

  m.def(
      "top_p_sampling_from_probs(Tensor probs, Tensor uniform_samples, Tensor! samples, Tensor! success, Tensor? "
      "maybe_top_p_arr, float top_p_val, bool deterministic, int cuda_stream) -> ()");
  m.impl("top_p_sampling_from_probs", torch::kCUDA, &top_p_sampling_from_probs);
208
209
}

210
REGISTER_EXTENSION(common_ops)