benchmark_fbgemm_grouped_gemm.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# python3 benchmark/kernels/fbgemm/benchmark_fbgemm_grouped_gemm.py --model Qwen/Qwen2-57B-A14B-Instruct --tp-size 4 --use-fp8-w8a8
import argparse

import torch
import triton
from fbgemm_grouped_gemm import grouped_gemm as fbgemm_grouped_gemm
from fbgemm_grouped_gemm import (
    grouped_gemm_fp8_rowwise as fbgemm_grouped_gemm_fp8_rowwise,
)
from transformers import AutoConfig

from sglang.srt.layers.moe.ep_moe.kernels import (
    grouped_gemm_triton as sglang_grouped_gemm,
)


def get_model_config(model_name: str, tp_size: int):
    config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)

    if config.architectures[0] == "DbrxForCausalLM":
        num_groups = config.ffn_config.moe_num_experts
        intermediate_size = config.ffn_config.ffn_hidden_size
    elif config.architectures[0] == "JambaForCausalLM":
        num_groups = config.num_experts
        intermediate_size = config.intermediate_size
    elif config.architectures[0] == "Qwen2MoeForCausalLM":
        num_groups = config.num_experts
        intermediate_size = config.moe_intermediate_size
    elif config.architectures[0] == "Qwen3MoeForCausalLM":
        num_groups = config.num_experts
        intermediate_size = config.moe_intermediate_size
    elif config.architectures[0] in ["DeepseekV2ForCausalLM", "DeepseekV3ForCausalLM"]:
        num_groups = (
            config.n_routed_experts + 1
            if config.architectures[0] in ["DeepseekV3ForCausalLM"]
            else config.n_routed_experts
        )
        intermediate_size = config.moe_intermediate_size
    elif config.architectures[0] == "Llama4ForConditionalGeneration":
        num_groups = config.text_config.num_local_experts
        intermediate_size = config.text_config.intermediate_size
    elif config.architectures[0] in [
        "Grok1ForCausalLM",
        "Grok1ImgGen",
        "Grok1AForCausalLM",
    ]:
        num_groups = config.num_local_experts
        intermediate_size = config.moe_intermediate_size
    else:
        num_groups = config.num_local_experts
        intermediate_size = config.intermediate_size

    shape_configs = {
        "num_groups": num_groups,
        "hidden_size": config.hidden_size,
        "intermediate_size": intermediate_size,
        "dtype": config.torch_dtype,
    }
    print(f"{shape_configs=}")
    return shape_configs


def create_test_data(batch_size, num_groups, hidden_size, intermediate_size):
    torch.manual_seed(42)

    tokens_per_group = batch_size // num_groups
    m_sizes = torch.full(
        (num_groups,), tokens_per_group, dtype=torch.int64, device="cuda"
    )

    x = torch.randn(batch_size, hidden_size, dtype=torch.bfloat16, device="cuda")

    base_weights = torch.randn(
        num_groups, intermediate_size, hidden_size, dtype=torch.bfloat16, device="cuda"
    )

    w_fbgemm = base_weights.reshape(num_groups * intermediate_size, hidden_size)
    w_sglang = base_weights

    c_fbgemm = torch.empty(
        batch_size, intermediate_size, dtype=torch.bfloat16, device="cuda"
    )
    c_sglang = torch.empty(
        batch_size, intermediate_size, dtype=torch.bfloat16, device="cuda"
    )

    seg_indptr = torch.zeros(num_groups + 1, dtype=torch.int64, device="cuda")
    for i in range(1, num_groups + 1):
        seg_indptr[i] = seg_indptr[i - 1] + tokens_per_group

    weight_indices = torch.arange(num_groups, dtype=torch.int64, device="cuda")

    return (
        x,
        w_fbgemm,
        w_sglang,
        c_fbgemm,
        c_sglang,
        m_sizes,
        seg_indptr,
        weight_indices,
    )


def create_fp8_test_data(batch_size, num_groups, hidden_size, intermediate_size):
    torch.manual_seed(42)

    tokens_per_group = batch_size // num_groups
    m_sizes = torch.full(
        (num_groups,), tokens_per_group, dtype=torch.int64, device="cuda"
    )

    x_fp16 = torch.randn(batch_size, hidden_size, dtype=torch.float16, device="cuda")
    w_fp16 = torch.randn(
        num_groups * intermediate_size, hidden_size, dtype=torch.float16, device="cuda"
    )

    x_fp8 = x_fp16.to(torch.float8_e4m3fn)
    w_fp8 = w_fp16.to(torch.float8_e4m3fn)

    x_scale = torch.randn(batch_size, dtype=torch.float32, device="cuda").abs() + 1e-4
    w_scale = torch.randn(num_groups, dtype=torch.float32, device="cuda").abs() + 1e-4

    return x_fp8, w_fp8, m_sizes, x_scale, w_scale


def get_benchmark_config(use_fp8_w8a8=False):
    if use_fp8_w8a8:
        return {
            "line_vals": ["fbgemm_grouped_gemm_fp8", "sglang_grouped_gemm"],
            "line_names": ["FBGEMM Grouped GEMM FP8", "SGLang Grouped GEMM FP8"],
            "styles": [("blue", "-"), ("red", "-")],
        }
    else:
        return {
            "line_vals": ["fbgemm_grouped_gemm", "sglang_grouped_gemm"],
            "line_names": ["FBGEMM Grouped GEMM BF16", "SGLang Grouped GEMM BF16"],
            "styles": [("blue", "-"), ("green", "-")],
        }


def run_benchmark(
    model_config, use_fp8_w8a8=False, save_path="./benchmark_grouped_gemm/"
):
    config = get_benchmark_config(use_fp8_w8a8)

    benchmark_config = triton.testing.Benchmark(
        x_names=["batch_size"],
        x_vals=[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096],
        line_arg="provider",
        line_vals=config["line_vals"],
        line_names=config["line_names"],
        styles=config["styles"],
        ylabel="Time (ms)",
        plot_name="grouped-gemm-performance",
        args={},
    )

    @triton.testing.perf_report(benchmark_config)
    def dynamic_benchmark(batch_size, provider, model_config, use_fp8_w8a8=False):
        print(f"Benchmarking {provider} with batch_size={batch_size}")
        torch.cuda.manual_seed_all(0)

        num_groups = model_config["num_groups"]
        hidden_size = model_config["hidden_size"]
        intermediate_size = model_config["intermediate_size"]

        if provider == "fbgemm_grouped_gemm_fp8":
            try:
                test_data = create_fp8_test_data(
                    batch_size, num_groups, hidden_size, intermediate_size
                )
                x_fp8, w_fp8, m_sizes, x_scale, w_scale = test_data

                def run_func():
                    return fbgemm_grouped_gemm_fp8_rowwise(
                        x_fp8, w_fp8, m_sizes, x_scale, w_scale, use_fast_accum=True
                    )

            except Exception as e:
                print(f"FP8 not supported, skipping: {e}")
                return float("inf"), float("inf"), float("inf")
        else:
            test_data = create_test_data(
                batch_size, num_groups, hidden_size, intermediate_size
            )
            (
                x,
                w_fbgemm,
                w_sglang,
                c_fbgemm,
                c_sglang,
                m_sizes,
                seg_indptr,
                weight_indices,
            ) = test_data

            if provider == "fbgemm_grouped_gemm":

                def run_func():
                    return fbgemm_grouped_gemm(
                        x, w_fbgemm, m_sizes, use_fast_accum=True
                    )

            else:

                def run_func():
                    return sglang_grouped_gemm(
                        x,
                        w_sglang,
                        c_sglang,
                        num_groups,
                        weight_column_major=True,
                        seg_indptr=seg_indptr,
                        weight_indices=weight_indices,
                        c_dtype=c_sglang.dtype,
                    )

        for _ in range(10):
            try:
                run_func()
            except Exception as e:
                print(f"Error during warmup for {provider}: {e}")
                return float("inf"), float("inf"), float("inf")

        torch.cuda.synchronize()

        try:
            quantiles = [0.5, 0.2, 0.8]
            ms, min_ms, max_ms = triton.testing.do_bench(run_func, quantiles=quantiles)
            return ms, min_ms, max_ms
        except Exception as e:
            print(f"Error during benchmarking for {provider}: {e}")
            return float("inf"), float("inf"), float("inf")

    dynamic_benchmark.run(
        show_plots=True,
        print_data=True,
        save_path=save_path,
        model_config=model_config,
        use_fp8_w8a8=use_fp8_w8a8,
    )


def verify_correctness(model_config, use_fp8_w8a8):
    print("Verifying correctness...")
    batch_size = 128
    num_groups = model_config["num_groups"]
    hidden_size = model_config["hidden_size"]
    intermediate_size = model_config["intermediate_size"]

    test_data = create_test_data(batch_size, num_groups, hidden_size, intermediate_size)
    (x, w_fbgemm, w_sglang, c_fbgemm, c_sglang, m_sizes, seg_indptr, weight_indices) = (
        test_data
    )

    try:
        result_fbgemm = fbgemm_grouped_gemm(x, w_fbgemm, m_sizes, use_fast_accum=True)

        result_sglang = sglang_grouped_gemm(
            x,
            w_sglang,
            c_sglang,
            num_groups,
            weight_column_major=True,
            seg_indptr=seg_indptr,
            weight_indices=weight_indices,
            c_dtype=c_sglang.dtype,
        )

        if torch.allclose(result_fbgemm, result_sglang, rtol=1e-3, atol=1e-3):
            print("✓ BF16 Correctness verification passed!")
        else:
            max_diff = torch.max(torch.abs(result_fbgemm - result_sglang))
            print(f"✗ BF16 Correctness verification failed! Max diff: {max_diff}")
            return False

        if use_fp8_w8a8:
            try:
                fp8_data = create_fp8_test_data(
                    batch_size, num_groups, hidden_size, intermediate_size
                )
                x_fp8, w_fp8, m_sizes_fp8, x_scale, w_scale = fp8_data

                result_fp8 = fbgemm_grouped_gemm_fp8_rowwise(
                    x_fp8, w_fp8, m_sizes_fp8, x_scale, w_scale, use_fast_accum=True
                )

                assert result_fp8.shape == (batch_size, intermediate_size)
                print("✓ FP8 functionality test passed!")
            except Exception as e:
                print(f"FP8 test failed (possibly unsupported): {e}")
                return False

        return True

    except Exception as e:
        print(f"✗ Error during correctness verification: {e}")
        return False


def main():
    parser = argparse.ArgumentParser(
        description="Benchmark FBGEMM vs SGLang Grouped GEMM"
    )
    parser.add_argument(
        "--model",
        type=str,
        default="mistralai/Mixtral-8x7B-Instruct-v0.1",
        help="Model name to get configuration from",
    )
    parser.add_argument(
        "--tp-size", type=int, default=1, help="Tensor parallelism size"
    )
    parser.add_argument(
        "--use-fp8-w8a8", action="store_true", help="Enable FP8 W8A8 benchmark"
    )
    parser.add_argument(
        "--save-path",
        type=str,
        default="./benchmark_grouped_gemm/",
        help="Path to save benchmark results",
    )
    parser.add_argument(
        "--verify-correctness",
        action="store_true",
        help="Verify correctness before benchmarking",
    )

    args = parser.parse_args()

    try:
        model_config = get_model_config(args.model, args.tp_size)
    except Exception as e:
        print(f"Failed to get model config: {e}")
        print("Using default configuration...")
        model_config = {
            "num_groups": 8,
            "hidden_size": 4096,
            "intermediate_size": 14336,
            "dtype": torch.bfloat16,
        }

    print("Running benchmark with:")
    print(f"  num_groups: {model_config['num_groups']}")
    print(f"  hidden_size: {model_config['hidden_size']}")
    print(f"  intermediate_size: {model_config['intermediate_size']}")
    print(f"  use_fp8_w8a8: {args.use_fp8_w8a8}")

    if args.verify_correctness:
        if not verify_correctness(model_config, args.use_fp8_w8a8):
            print("Correctness verification failed. Exiting...")
            return

    try:
        run_benchmark(
            model_config=model_config,
            use_fp8_w8a8=args.use_fp8_w8a8,
            save_path=args.save_path,
        )
    except Exception as e:
        print(f"Benchmark failed: {e}")


if __name__ == "__main__":
    main()