test_openai_server.py 14.9 KB
Newer Older
1
import json
2
import time
3
import unittest
4
5

import openai
6

yichuan~'s avatar
yichuan~ committed
7
from sglang.srt.hf_transformers_utils import get_tokenizer
8
from sglang.srt.utils import kill_child_process
9
10
from sglang.test.test_utils import (
    DEFAULT_MODEL_NAME_FOR_TEST,
Yineng Zhang's avatar
Yineng Zhang committed
11
    DEFAULT_URL_FOR_UNIT_TEST,
12
13
    popen_launch_server,
)
14
15
16
17
18


class TestOpenAIServer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
Ying Sheng's avatar
Ying Sheng committed
19
        cls.model = DEFAULT_MODEL_NAME_FOR_TEST
Yineng Zhang's avatar
Yineng Zhang committed
20
        cls.base_url = DEFAULT_URL_FOR_UNIT_TEST
21
22
23
24
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model, cls.base_url, timeout=300, api_key=cls.api_key
        )
25
        cls.base_url += "/v1"
Ying Sheng's avatar
Ying Sheng committed
26
        cls.tokenizer = get_tokenizer(DEFAULT_MODEL_NAME_FOR_TEST)
27
28
29
30
31

    @classmethod
    def tearDownClass(cls):
        kill_child_process(cls.process.pid)

yichuan~'s avatar
yichuan~ committed
32
33
34
    def run_completion(
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
    ):
35
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
36
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
37
38
39
40
41
42
        if token_input:
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
        else:
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))
43
44

        if use_list_input:
yichuan~'s avatar
yichuan~ committed
45
            prompt_arg = [prompt_input, prompt_input]
46
            num_choices = len(prompt_arg)
yichuan~'s avatar
yichuan~ committed
47
            num_prompt_tokens *= 2
48
        else:
yichuan~'s avatar
yichuan~ committed
49
            prompt_arg = prompt_input
50
51
            num_choices = 1

52
53
        response = client.completions.create(
            model=self.model,
54
            prompt=prompt_arg,
yichuan~'s avatar
yichuan~ committed
55
            temperature=0,
56
57
58
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
59
            n=parallel_sample_num,
60
        )
61

yichuan~'s avatar
yichuan~ committed
62
        assert len(response.choices) == num_choices * parallel_sample_num
63

Cody Yu's avatar
Cody Yu committed
64
        if echo:
65
            text = response.choices[0].text
66
            assert text.startswith(prompt)
yichuan~'s avatar
yichuan~ committed
67

Cody Yu's avatar
Cody Yu committed
68
        if logprobs:
69
70
71
            assert response.choices[0].logprobs
            assert isinstance(response.choices[0].logprobs.tokens[0], str)
            assert isinstance(response.choices[0].logprobs.top_logprobs[1], dict)
72
            ret_num_top_logprobs = len(response.choices[0].logprobs.top_logprobs[1])
73

yichuan~'s avatar
yichuan~ committed
74
            # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some out_put id maps to the same output token and duplicate in the map
75
            # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
76

yichuan~'s avatar
yichuan~ committed
77
            assert ret_num_top_logprobs > 0
78
            assert response.choices[0].logprobs.token_logprobs[0] != None
yichuan~'s avatar
yichuan~ committed
79

80
81
        assert response.id
        assert response.created
yichuan~'s avatar
yichuan~ committed
82
83
84
        assert (
            response.usage.prompt_tokens == num_prompt_tokens
        ), f"{response.usage.prompt_tokens} vs {num_prompt_tokens}"
85
86
87
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

yichuan~'s avatar
yichuan~ committed
88
    def run_completion_stream(self, echo, logprobs, token_input):
89
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
90
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
91
92
93
94
        if token_input:
            prompt_arg = self.tokenizer.encode(prompt)
        else:
            prompt_arg = prompt
95
96
        generator = client.completions.create(
            model=self.model,
yichuan~'s avatar
yichuan~ committed
97
98
            prompt=prompt_arg,
            temperature=0,
99
100
101
102
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
            stream=True,
103
            stream_options={"include_usage": True},
104
105
106
107
        )

        first = True
        for response in generator:
108
109
110
111
112
113
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue
114
115
116
117
            if logprobs:
                assert response.choices[0].logprobs
                assert isinstance(response.choices[0].logprobs.tokens[0], str)
                if not (first and echo):
118
119
120
121
122
123
                    assert isinstance(
                        response.choices[0].logprobs.top_logprobs[0], dict
                    )
                    ret_num_top_logprobs = len(
                        response.choices[0].logprobs.top_logprobs[0]
                    )
yichuan~'s avatar
yichuan~ committed
124
                    # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some out_put id maps to the same output token and duplicate in the map
125
                    # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
126
                    assert ret_num_top_logprobs > 0
127
128
129

            if first:
                if echo:
yichuan~'s avatar
yichuan~ committed
130
131
132
                    assert response.choices[0].text.startswith(
                        prompt
                    ), f"{response.choices[0].text} and all args {echo} {logprobs} {token_input} {first}"
133
134
135
136
                first = False
            assert response.id
            assert response.created

yichuan~'s avatar
yichuan~ committed
137
    def run_chat_completion(self, logprobs, parallel_sample_num):
138
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
139
140
141
142
        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
Ying Sheng's avatar
Ying Sheng committed
143
144
145
146
                {
                    "role": "user",
                    "content": "What is the capital of France? Answer in a few words.",
                },
147
148
149
150
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
151
            n=parallel_sample_num,
152
        )
Ying Sheng's avatar
Ying Sheng committed
153

154
155
156
157
158
159
160
161
162
163
164
        if logprobs:
            assert isinstance(
                response.choices[0].logprobs.content[0].top_logprobs[0].token, str
            )

            ret_num_top_logprobs = len(
                response.choices[0].logprobs.content[0].top_logprobs
            )
            assert (
                ret_num_top_logprobs == logprobs
            ), f"{ret_num_top_logprobs} vs {logprobs}"
Ying Sheng's avatar
Ying Sheng committed
165

yichuan~'s avatar
yichuan~ committed
166
        assert len(response.choices) == parallel_sample_num
167
168
169
170
171
172
173
174
175
        assert response.choices[0].message.role == "assistant"
        assert isinstance(response.choices[0].message.content, str)
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

    def run_chat_completion_stream(self, logprobs):
176
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
177
178
179
180
181
182
183
184
185
186
        generator = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "What is the capital of France?"},
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
            stream=True,
187
            stream_options={"include_usage": True},
188
189
190
191
        )

        is_first = True
        for response in generator:
192
193
194
195
196
197
198
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue

199
            data = response.choices[0].delta
200

201
202
203
204
205
206
            if is_first:
                data.role == "assistant"
                is_first = False
                continue

            if logprobs:
yichuan~'s avatar
yichuan~ committed
207
208
209
210
211
212
213
214
215
216
217
218
219
                assert response.choices[0].logprobs
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs[0].token, str
                )
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs, list
                )
                ret_num_top_logprobs = len(
                    response.choices[0].logprobs.content[0].top_logprobs
                )
                assert (
                    ret_num_top_logprobs == logprobs
                ), f"{ret_num_top_logprobs} vs {logprobs}"
220
221
222
223
224

            assert isinstance(data.content, str)
            assert response.id
            assert response.created

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    def run_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        if mode == "completion":
            input_file_path = "complete_input.jsonl"
            # write content to input file
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 3 names of famous soccer player: ",
                        "max_tokens": 20,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous basketball player:  ",
                        "max_tokens": 40,
                    },
                },
                {
                    "custom_id": "request-3",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous tenniss player:  ",
                        "max_tokens": 40,
                    },
                },
            ]

        else:
            input_file_path = "chat_input.jsonl"
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {
                                "role": "system",
                                "content": "You are a helpful assistant.",
                            },
                            {
                                "role": "user",
                                "content": "Hello! List 3 NBA players and tell a story",
                            },
                        ],
                        "max_tokens": 30,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {"role": "system", "content": "You are an assistant. "},
                            {
                                "role": "user",
                                "content": "Hello! List three capital and tell a story",
                            },
                        ],
                        "max_tokens": 50,
                    },
                },
            ]
        with open(input_file_path, "w") as file:
            for line in content:
                file.write(json.dumps(line) + "\n")
        with open(input_file_path, "rb") as file:
            uploaded_file = client.files.create(file=file, purpose="batch")
        if mode == "completion":
            endpoint = "/v1/completions"
        elif mode == "chat":
            endpoint = "/v1/chat/completions"
        completion_window = "24h"
        batch_job = client.batches.create(
            input_file_id=uploaded_file.id,
            endpoint=endpoint,
            completion_window=completion_window,
        )
        while batch_job.status not in ["completed", "failed", "cancelled"]:
            time.sleep(3)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            batch_job = client.batches.retrieve(batch_job.id)
        assert batch_job.status == "completed"
        assert batch_job.request_counts.completed == len(content)
        assert batch_job.request_counts.failed == 0
        assert batch_job.request_counts.total == len(content)

        result_file_id = batch_job.output_file_id
        file_response = client.files.content(result_file_id)
yichuan~'s avatar
yichuan~ committed
330
331
332
333
334
335
        result_content = file_response.read().decode("utf-8")  # Decode bytes to string
        results = [
            json.loads(line)
            for line in result_content.split("\n")
            if line.strip() != ""
        ]
336
337
        assert len(results) == len(content)

338
339
340
    def test_completion(self):
        for echo in [False, True]:
            for logprobs in [None, 5]:
341
                for use_list_input in [True, False]:
yichuan~'s avatar
yichuan~ committed
342
343
344
345
346
347
348
349
350
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
351
352

    def test_completion_stream(self):
yichuan~'s avatar
yichuan~ committed
353
        # parallel sampling adn list input are not supported in streaming mode
354
355
        for echo in [False, True]:
            for logprobs in [None, 5]:
yichuan~'s avatar
yichuan~ committed
356
357
                for token_input in [False, True]:
                    self.run_completion_stream(echo, logprobs, token_input)
358

359
360
    def test_chat_completion(self):
        for logprobs in [None, 5]:
yichuan~'s avatar
yichuan~ committed
361
362
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion(logprobs, parallel_sample_num)
363
364
365
366
367

    def test_chat_completion_stream(self):
        for logprobs in [None, 5]:
            self.run_chat_completion_stream(logprobs)

368
369
370
371
    def test_batch(self):
        for mode in ["completion", "chat"]:
            self.run_batch(mode)

372
    def test_regex(self):
373
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

        regex = (
            r"""\{\n"""
            + r"""   "name": "[\w]+",\n"""
            + r"""   "population": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=128,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["name"], str)
        assert isinstance(js_obj["population"], int)

402

403
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
404
    unittest.main()