benchmark_deepgemm_fp8_gemm.py 9.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import itertools
from typing import Tuple

import deep_gemm
import numpy as np
import torch
import triton
import triton.language as tl
from deep_gemm import ceil_div, get_col_major_tma_aligned_tensor
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
    w8a8_block_fp8_matmul as vllm_w8a8_block_fp8_matmul,
)

from sglang.srt.layers.quantization.fp8_kernel import w8a8_block_fp8_matmul


def per_token_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.dim() == 2 and x.size(1) % 128 == 0
    m, n = x.shape
    x_view = x.view(m, -1, 128)
    x_amax = x_view.abs().float().amax(dim=2).view(m, -1).clamp(1e-4)
    return (x_view * (448.0 / x_amax.unsqueeze(2))).to(torch.float8_e4m3fn).view(
        m, n
    ), (x_amax / 448.0).view(m, -1)


def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.dim() == 2
    m, n = x.shape
    x_padded = torch.zeros(
        (ceil_div(m, 128) * 128, ceil_div(n, 128) * 128), dtype=x.dtype, device=x.device
    )
    x_padded[:m, :n] = x
    x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
    x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
    x_scaled = (x_view * (448.0 / x_amax)).to(torch.float8_e4m3fn)
    return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(
        x_view.size(0), x_view.size(2)
    )


def fp8_gemm_deepgemm(
    x_fp8: torch.Tensor,
    x_scale: torch.Tensor,
    y_fp8: torch.Tensor,
    y_scale: torch.Tensor,
    m: int,
    n: int,
    k: int,
):
    """DeepGEMM implementation of FP8 GEMM"""
    out = torch.empty((m, n), device="cuda", dtype=torch.bfloat16)

    # Run DeepGEMM kernel
    deep_gemm.gemm_fp8_fp8_bf16_nt((x_fp8, x_scale), (y_fp8, y_scale), out)
    return out


def fp8_gemm_sglang(
    x_fp8: torch.Tensor,
    x_scale: torch.Tensor,
    y_fp8: torch.Tensor,
    y_scale: torch.Tensor,
    m: int,
    n: int,
    k: int,
):
    """SGLang implementation of FP8 GEMM"""
    block_size = [128, 128]  # Matches the block size in per_block_cast_to_fp8

    # Run SGLang kernel
    out = w8a8_block_fp8_matmul(
        x_fp8, y_fp8, x_scale, y_scale, block_size, torch.bfloat16
    )
    return out


def fp8_gemm_vllm(
    x_fp8: torch.Tensor,
    x_scale: torch.Tensor,
    y_fp8: torch.Tensor,
    y_scale: torch.Tensor,
    m: int,
    n: int,
    k: int,
):
    """vLLM implementation of FP8 GEMM"""
    block_size = [128, 128]  # Matches the block size in per_block_cast_to_fp8

    # Run vLLM kernel
    out = vllm_w8a8_block_fp8_matmul(
        x_fp8, y_fp8, x_scale, y_scale, block_size, torch.bfloat16
    )
    return out


def calculate_diff(m: int, n: int, k: int):
    x = torch.randn((m, k), device="cuda", dtype=torch.bfloat16)
    y = torch.randn((n, k), device="cuda", dtype=torch.bfloat16)

    x_fp8, x_scale = per_token_cast_to_fp8(x.clone())
    y_fp8, y_scale = per_block_cast_to_fp8(y.clone())
    x_scale_col_major = get_col_major_tma_aligned_tensor(x_scale.clone())

    out_deepgemm = fp8_gemm_deepgemm(
        x_fp8.clone(),
        x_scale_col_major.clone(),
        y_fp8.clone(),
        y_scale.clone(),
        m,
        n,
        k,
    )
    out_sglang = fp8_gemm_sglang(
        x_fp8.clone(), x_scale.clone(), y_fp8.clone(), y_scale.clone(), m, n, k
    )
    out_vllm = fp8_gemm_vllm(
        x_fp8.clone(), x_scale.clone(), y_fp8.clone(), y_scale.clone(), m, n, k
    )

    diff_sglang_deepgemm = torch.abs(out_deepgemm - out_sglang).mean().item()
    diff_vllm_deepgemm = torch.abs(out_deepgemm - out_vllm).mean().item()
    diff_vllm_sglang = torch.abs(out_vllm - out_sglang).mean().item()

    print(f"Shape m={m}, n={n}, k={k}:")
    print(f"DeepGEMM output: {out_deepgemm[0, 0:5]}")
    print(f"SGLang output: {out_sglang[0, 0:5]}")
    print(f"vLLM output: {out_vllm[0, 0:5]}")
    print(f"Mean absolute difference (SGLang-DeepGEMM): {diff_sglang_deepgemm}")
    print(f"Mean absolute difference (vLLM-DeepGEMM): {diff_vllm_deepgemm}")
    print(f"Mean absolute difference (vLLM-SGLang): {diff_vllm_sglang}")

    sglang_deepgemm_match = torch.allclose(
        out_deepgemm, out_sglang, atol=1e-2, rtol=1e-2
    )
    vllm_deepgemm_match = torch.allclose(out_deepgemm, out_vllm, atol=1e-2, rtol=1e-2)
    vllm_sglang_match = torch.allclose(out_vllm, out_sglang, atol=1e-2, rtol=1e-2)

    if sglang_deepgemm_match and vllm_deepgemm_match and vllm_sglang_match:
        print("✅ All implementations match\n")
    else:
        print("❌ Some implementations differ:")
        print(f"  - SGLang vs DeepGEMM: {'✅' if sglang_deepgemm_match else '❌'}")
        print(f"  - vLLM vs DeepGEMM: {'✅' if vllm_deepgemm_match else '❌'}")
        print(f"  - vLLM vs SGLang: {'✅' if vllm_sglang_match else '❌'}\n")


def get_weight_shapes(tp_size):
    # cannot TP
    total = [
        (512 + 64, 7168),
        ((128 + 64) * 128, 7168),
        (128 * (128 + 128), 512),
        (7168, 16384),
        (7168, 18432),
    ]
    # N can TP
    n_tp = [
        (18432 * 2, 7168),
        ((128 + 64) * 128, 7168),
        (128 * (128 + 128), 512),
        (24576, 1536),
        (4096, 7168),
    ]
    # K can TP
    k_tp = [(7168, 18432), (7168, 16384), (7168, 2048)]

    weight_shapes = []
    for t in total:
        weight_shapes.append(t)
    for n_t in n_tp:
        new_t = (n_t[0] // tp_size, n_t[1])
        weight_shapes.append(new_t)
    for k_t in k_tp:
        new_t = (k_t[0], k_t[1] // tp_size)
        weight_shapes.append(new_t)

    return weight_shapes


def create_benchmark_configs(tp_size):
    configs = []
    weight_shapes = get_weight_shapes(tp_size)
    batch_sizes = [8, 16, 32, 64, 128, 256, 1024, 2048, 4096]

    for n, k in weight_shapes:
        for m in batch_sizes:
            configs.append((m, n, k, tp_size))

    return configs


def get_benchmark(tp_size):
    all_configs = create_benchmark_configs(tp_size)

    @triton.testing.perf_report(
        triton.testing.Benchmark(
            x_names=["m", "n", "k", "tp_size"],
            x_vals=[list(config) for config in all_configs],
            line_arg="provider",
            line_vals=["deepgemm", "sglang", "vllm"],
            line_names=["DeepGEMM", "SGLang", "vLLM"],
            styles=[("blue", "-"), ("red", "-"), ("green", "-")],
            ylabel="ms",
            plot_name=f"fp8-gemm-performance-comparison-tp{tp_size}",
            args={},
        )
    )
    def benchmark(m, n, k, tp_size, provider):
        print(f"Shape (m={m}, n={n}, k={k}, tp={tp_size}), Provider: {provider}")
        x = torch.randn((m, k), device="cuda", dtype=torch.bfloat16)
        y = torch.randn((n, k), device="cuda", dtype=torch.bfloat16)

214
        # Preprocess data before benchmarking
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        x_fp8, x_scale = per_token_cast_to_fp8(x)
        y_fp8, y_scale = per_block_cast_to_fp8(y)
        x_scale_col_major = get_col_major_tma_aligned_tensor(x_scale.clone())

        quantiles = [0.5, 0.2, 0.8]

        if provider == "deepgemm":
            ms, min_ms, max_ms = triton.testing.do_bench(
                lambda: fp8_gemm_deepgemm(
                    x_fp8.clone(),
                    x_scale_col_major.clone(),
                    y_fp8.clone(),
                    y_scale.clone(),
                    m,
                    n,
                    k,
                ),
                quantiles=quantiles,
            )
        elif provider == "sglang":
            ms, min_ms, max_ms = triton.testing.do_bench(
                lambda: fp8_gemm_sglang(
                    x_fp8.clone(),
                    x_scale.clone(),
                    y_fp8.clone(),
                    y_scale.clone(),
                    m,
                    n,
                    k,
                ),
                quantiles=quantiles,
            )
        else:  # vllm
            ms, min_ms, max_ms = triton.testing.do_bench(
                lambda: fp8_gemm_vllm(
                    x_fp8.clone(),
                    x_scale.clone(),
                    y_fp8.clone(),
                    y_scale.clone(),
                    m,
                    n,
                    k,
                ),
                quantiles=quantiles,
            )

        # Calculate TFLOPS
        flops = 2 * m * n * k  # multiply-adds
        tflops = flops / (ms * 1e-3) / 1e12

        # Print shape-specific results with TFLOPS
        print(f"Time: {ms*1000:.2f} ms, TFLOPS: {tflops:.2f}")
        return ms * 1000, max_ms * 1000, min_ms * 1000  # convert to ms

    return benchmark


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--save_path",
        type=str,
        default="./configs/benchmark_ops/fp8_gemm/",
        help="Path to save fp8 gemm benchmark results",
    )
    parser.add_argument(
        "--run_correctness",
        action="store_true",
        help="Whether to run correctness test",
    )
    parser.add_argument(
        "--tp_size",
        type=int,
        default=1,
        help="Tensor parallelism size to benchmark (default: 1)",
    )
    args = parser.parse_args()

    # Set random seed for reproducibility
    torch.manual_seed(0)
    torch.cuda.manual_seed(0)

    # Enable TF32, adapted from https://github.com/deepseek-ai/DeepGEMM/blob/main/tests/test_core.py#L148
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True

    # Run correctness tests on a few examples
    if args.run_correctness:
        print("Running correctness tests...")
        calculate_diff(64, 512, 7168)  # Small test
        calculate_diff(64, 7168, 16384)  # Medium test
        calculate_diff(64, 18432, 7168)  # Large test

    # Get the benchmark function with the specified tp_size
    benchmark = get_benchmark(args.tp_size)

    print(f"Running performance benchmark for TP size = {args.tp_size}...")
    benchmark.run(print_data=True, save_path=args.save_path)