test_function_calling.py 8.78 KB
Newer Older
YAMY's avatar
YAMY committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import json
import time
import unittest

import openai

from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
)


class TestOpenAIServerFunctionCalling(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        # Replace with the model name needed for testing; if not required, reuse DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # Start the local OpenAI Server. If necessary, you can add other parameters such as --enable-tools.
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                # If your server needs extra parameters to test function calling, please add them here.
                "--tool-call-parser",
                "llama3",
            ],
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(cls.model)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_function_calling_format(self):
        """
        Test: Whether the function call format returned by the AI is correct.
        When returning a tool call, message.content should be None, and tool_calls should be a list.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        tools = [
            {
                "type": "function",
                "function": {
                    "name": "add",
                    "description": "Compute the sum of two numbers",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "a": {
                                "type": "int",
                                "description": "A number",
                            },
                            "b": {
                                "type": "int",
                                "description": "A number",
                            },
                        },
                        "required": ["a", "b"],
                    },
                },
            }
        ]

        messages = [{"role": "user", "content": "Compute (3+5)"}]
        response = client.chat.completions.create(
            model=self.model,
            messages=messages,
            temperature=0.8,
            top_p=0.8,
            stream=False,
            tools=tools,
        )

        content = response.choices[0].message.content
        tool_calls = response.choices[0].message.tool_calls

        assert content is None, (
            "When function call is successful, message.content should be None, "
            f"but got: {content}"
        )
        assert (
            isinstance(tool_calls, list) and len(tool_calls) > 0
        ), "tool_calls should be a non-empty list"

        function_name = tool_calls[0].function.name
        assert function_name == "add", "Function name should be 'add'"

    def test_function_calling_streaming_simple(self):
        """
        Test: Whether the function name can be correctly recognized in streaming mode.
        - Expect a function call to be found, and the function name to be correct.
        - Verify that streaming mode returns at least multiple chunks.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        tools = [
            {
                "type": "function",
                "function": {
                    "name": "get_current_weather",
                    "description": "Get the current weather in a given location",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "city": {
                                "type": "string",
                                "description": "The city to find the weather for",
                            },
                            "unit": {
                                "type": "string",
                                "description": "Weather unit (celsius or fahrenheit)",
                                "enum": ["celsius", "fahrenheit"],
                            },
                        },
                        "required": ["city", "unit"],
                    },
                },
            }
        ]

        messages = [{"role": "user", "content": "What is the temperature in Paris?"}]

        response_stream = client.chat.completions.create(
            model=self.model,
            messages=messages,
            temperature=0.8,
            top_p=0.8,
            stream=True,
            tools=tools,
        )

        chunks = list(response_stream)
        self.assertTrue(len(chunks) > 0, "Streaming should return at least one chunk")

        found_function_name = False
        for chunk in chunks:
            choice = chunk.choices[0]
            # Check whether the current chunk contains tool_calls
            if choice.delta.tool_calls:
                tool_call = choice.delta.tool_calls[0]
                if tool_call.function.name:
                    self.assertEqual(
                        tool_call.function.name,
                        "get_current_weather",
                        "Function name should be 'get_current_weather'",
                    )
                    found_function_name = True
                    break

        self.assertTrue(
            found_function_name,
            "Target function name 'get_current_weather' was not found in the streaming chunks",
        )

    def test_function_calling_streaming_args_parsing(self):
        """
        Test: Whether the function call arguments returned in streaming mode can be correctly concatenated into valid JSON.
        - The user request requires multiple parameters.
        - AI may return the arguments in chunks that need to be concatenated.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        tools = [
            {
                "type": "function",
                "function": {
                    "name": "add",
                    "description": "Compute the sum of two integers",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "a": {
                                "type": "int",
                                "description": "First integer",
                            },
                            "b": {
                                "type": "int",
                                "description": "Second integer",
                            },
                        },
                        "required": ["a", "b"],
                    },
                },
            }
        ]

        messages = [
            {"role": "user", "content": "Please sum 5 and 7, just call the function."}
        ]

        response_stream = client.chat.completions.create(
            model=self.model,
            messages=messages,
            temperature=0.9,
            top_p=0.9,
            stream=True,
            tools=tools,
        )

        argument_fragments = []
        function_name = None
        for chunk in response_stream:
            choice = chunk.choices[0]
            if choice.delta.tool_calls:
                tool_call = choice.delta.tool_calls[0]
                # Record the function name on first occurrence
                function_name = tool_call.function.name or function_name
                # In case of multiple chunks, JSON fragments may need to be concatenated
                if tool_call.function.arguments:
                    argument_fragments.append(tool_call.function.arguments)

        self.assertEqual(function_name, "add", "Function name should be 'add'")
        joined_args = "".join(argument_fragments)
        self.assertTrue(
            len(joined_args) > 0,
            "No parameter fragments were returned in the function call",
        )

        # Check whether the concatenated JSON is valid
        try:
            args_obj = json.loads(joined_args)
        except json.JSONDecodeError:
            self.fail(
                "The concatenated tool call arguments are not valid JSON, parsing failed"
            )

        self.assertIn("a", args_obj, "Missing parameter 'a'")
        self.assertIn("b", args_obj, "Missing parameter 'b'")
        self.assertEqual(
            args_obj["a"],
            5,
            "Parameter a should be 5",
        )
        self.assertEqual(args_obj["b"], 7, "Parameter b should be 7")


if __name__ == "__main__":
    unittest.main()