common_extension.cc 22.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
15
#include <ATen/core/dispatch/Dispatcher.h>
16
#include <torch/all.h>
17
18
#include <torch/library.h>

19
#include "sgl_kernel_ops.h"
20

21
TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
22
23
24
  /*
   * From csrc/allreduce
   */
25
26
27
  m.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta);
  m.def("register_graph_buffers", &register_graph_buffers);
  m.def("dispose", &dispose);
28
29
  m.def("meta_size", &meta_size);
  m.def("register_buffer", &register_buffer);
30
31

  m.def(
32
33
      "init_custom_ar(int[] ipc_tensors, Tensor rank_data, "
      "int rank, bool full_nvlink) -> int");
34
35
  m.impl("init_custom_ar", torch::kCUDA, &init_custom_ar);

36
37
38
  m.def(
      "all_reduce(int fa, Tensor inp, Tensor! out, int reg_buffer, "
      "int reg_buffer_sz_bytes) -> ()");
39
  m.impl("all_reduce", torch::kCUDA, &all_reduce);
40
41
42
43
44
45
46
47
48

  m.def("mscclpp_generate_unique_id", &mscclpp_generate_unique_id);
  m.def(
      "mscclpp_init_context(Tensor unique_id, int rank, int world_size, Tensor scratch, Tensor put_buffer, "
      "int nranks_per_node, int[] rank_to_node, int[] rank_to_ib, int context_selection) -> int");
  m.impl("mscclpp_init_context", torch::kCUDA, &mscclpp_init_context);

  m.def("mscclpp_allreduce(int context, Tensor inp, Tensor! out, int nthreads, int nblocks) -> ()");
  m.impl("mscclpp_allreduce", torch::kCUDA, &mscclpp_allreduce);
Lianmin Zheng's avatar
Lianmin Zheng committed
49

50
51
52
  /*
   * From csrc/attention
   */
53
54
55
56
  m.def(
      "lightning_attention_decode(Tensor q, Tensor k, Tensor v, Tensor past_kv, Tensor slope, Tensor! output, Tensor! "
      "new_kv) -> ()");
  m.impl("lightning_attention_decode", torch::kCUDA, &lightning_attention_decode);
Yineng Zhang's avatar
Yineng Zhang committed
57
58
  m.def("merge_state(Tensor v_a, Tensor s_a, Tensor v_b, Tensor s_b, Tensor! v_merged, Tensor! s_merged) -> ()");
  m.impl("merge_state", torch::kCUDA, &merge_state);
59
60
  m.def("merge_state_v2(Tensor v_a, Tensor s_a, Tensor v_b, Tensor s_b, Tensor! v_merged, Tensor! s_merged) -> ()");
  m.impl("merge_state_v2", torch::kCUDA, &merge_state_v2);
61
  m.def(
62
      "cutlass_mla_decode(Tensor! out, Tensor q_nope, Tensor q_pe, Tensor kv_c_and_k_pe_cache, Tensor seq_lens, Tensor "
63
      "page_table, Tensor! workspace, float sm_scale, int num_kv_splits) -> ()");
64
65
  m.impl("cutlass_mla_decode", torch::kCUDA, &cutlass_mla_decode);
  m.def("cutlass_mla_get_workspace_size", &cutlass_mla_get_workspace_size);
66

67
68
69
  /*
   * From csrc/elementwise
   */
70
  m.def("rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, bool enable_pdl) -> ()");
71
72
  m.impl("rmsnorm", torch::kCUDA, &rmsnorm);

73
  m.def("fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, bool enable_pdl) -> ()");
74
75
  m.impl("fused_add_rmsnorm", torch::kCUDA, &sgl_fused_add_rmsnorm);

76
  m.def("gemma_rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, bool enable_pdl) -> ()");
77
78
  m.impl("gemma_rmsnorm", torch::kCUDA, &gemma_rmsnorm);

79
  m.def("gemma_fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, bool enable_pdl) -> ()");
80
81
  m.impl("gemma_fused_add_rmsnorm", torch::kCUDA, &gemma_fused_add_rmsnorm);

82
  m.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
83
84
  m.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);

85
  m.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
86
87
  m.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);

88
  m.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
89
90
91
92
  m.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);

  m.def(
      "apply_rope_pos_ids_cos_sin_cache(Tensor q, Tensor k, Tensor! q_rope, Tensor! k_rope, Tensor cos_sin_cache, "
93
      "Tensor pos_ids, bool interleave, bool enable_pdl, int cuda_stream, "
94
      "Tensor? v, Tensor!? k_buffer, Tensor!? v_buffer, Tensor? kv_cache_loc) -> ()");
95
  m.impl("apply_rope_pos_ids_cos_sin_cache", torch::kCUDA, &apply_rope_pos_ids_cos_sin_cache);
96

97
98
99
100
101
  m.def(
      "downcast_fp8(Tensor k, Tensor v, Tensor k_out, Tensor v_out, Tensor k_scale, Tensor v_scale, Tensor loc, int "
      "mult, int offset, int cuda_stream) -> ()");
  m.impl("downcast_fp8", torch::kCUDA, &downcast_fp8);

102
103
104
  /*
   * From csrc/gemm
   */
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  m.def("awq_dequantize(Tensor qweight, Tensor scales, Tensor qzeros) -> Tensor");
  m.impl("awq_dequantize", torch::kCUDA, &awq_dequantize);

  m.def(
      "int8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("int8_scaled_mm", torch::kCUDA, &int8_scaled_mm);

  m.def(
      "fp8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("fp8_scaled_mm", torch::kCUDA, &fp8_scaled_mm);

  m.def(
      "fp8_blockwise_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype) -> "
      "Tensor");
  m.impl("fp8_blockwise_scaled_mm", torch::kCUDA, &fp8_blockwise_scaled_mm);

  m.def(
      "sgl_per_token_group_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
125
      " float eps, float fp8_min, float fp8_max, bool scale_ue8m0) -> ()");
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
  m.impl("sgl_per_token_group_quant_fp8", torch::kCUDA, &sgl_per_token_group_quant_fp8);

  m.def(
      "sgl_per_token_group_quant_int8(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
      " float eps, float int8_min, float int8_max) -> ()");
  m.impl("sgl_per_token_group_quant_int8", torch::kCUDA, &sgl_per_token_group_quant_int8);

  m.def("sgl_per_tensor_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, bool is_static) -> ()");
  m.impl("sgl_per_tensor_quant_fp8", torch::kCUDA, &sgl_per_tensor_quant_fp8);

  m.def("sgl_per_token_quant_fp8(Tensor input, Tensor output_q, Tensor output_s) -> ()");
  m.impl("sgl_per_token_quant_fp8", torch::kCUDA, &sgl_per_token_quant_fp8);

  m.def(
      "cutlass_scaled_fp4_mm(Tensor! out, Tensor a, Tensor b,"
      "                      Tensor block_scale_a, Tensor block_scale_b,"
      "                      Tensor alpha) -> ()");
  m.impl("cutlass_scaled_fp4_mm", torch::kCUDA, &cutlass_scaled_fp4_mm);

  m.def(
      "scaled_fp4_quant(Tensor! output, Tensor! input,"
      "                 Tensor! output_scale, Tensor! input_scale) -> ()");
  m.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
Trevor Morris's avatar
Trevor Morris committed
149

150
151
152
  m.def("dsv3_fused_a_gemm(Tensor! output, Tensor mat_a, Tensor mat_b) -> ()");
  m.impl("dsv3_fused_a_gemm", torch::kCUDA, &dsv3_fused_a_gemm);

153
154
155
156
157
158
159
  // Compute NVFP4 experts quantization.
  m.def(
      "scaled_fp4_experts_quant(Tensor! output, Tensor! output_scale,"
      "Tensor input, Tensor input_global_scale, Tensor input_offset_by_experts,"
      "Tensor output_scale_offset_by_experts) -> ()");
  m.impl("scaled_fp4_experts_quant", torch::kCUDA, &scaled_fp4_experts_quant);

160
161
  m.def(
      "silu_and_mul_scaled_fp4_experts_quant(Tensor! output, Tensor! output_scale,"
162
      "Tensor input, Tensor input_global_scale, Tensor mask, bool use_silu_and_mul) -> ()");
163
164
  m.impl("silu_and_mul_scaled_fp4_experts_quant", torch::kCUDA, &silu_and_mul_scaled_fp4_experts_quant);

165
166
167
168
169
170
171
  m.def(
      "cutlass_fp4_group_mm(Tensor! output, Tensor a, Tensor b,"
      "Tensor a_blockscale, Tensor b_blockscale, Tensor alphas,"
      "Tensor ab_strides, Tensor c_strides, Tensor problem_sizes,"
      " Tensor expert_offsets, Tensor sf_offsets) -> ()");
  m.impl("cutlass_fp4_group_mm", torch::kCUDA, &cutlass_fp4_group_mm);

172
173
174
  m.def("dsv3_router_gemm(Tensor! output, Tensor mat_a, Tensor mat_b) -> ()");
  m.impl("dsv3_router_gemm", torch::kCUDA, &dsv3_router_gemm);

175
176
177
  /*
   * From csrc/gemm/gptq
   */
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
  m.def(
      "gptq_marlin_gemm(Tensor! a, Tensor? c_or_none,"
      "Tensor! b_q_weight, Tensor! b_scales, Tensor? global_scale_or_none,"
      "Tensor? b_zeros_or_none, Tensor? g_idx_or_none, Tensor? perm_or_none,"
      "Tensor! workspace, int b_q_type_id, int size_m, int size_n, int size_k,"
      "bool is_k_full, bool use_atomic_add, bool use_fp32_reduce, bool is_zp_float) -> Tensor");
  m.impl("gptq_marlin_gemm", torch::kCUDA, &gptq_marlin_gemm);

  m.def(
      "gptq_gemm(Tensor a, Tensor b_q_weight, Tensor b_gptq_qzeros, Tensor b_gptq_scales, Tensor b_g_idx, bool "
      "use_shuffle, int bit) -> Tensor");
  m.impl("gptq_gemm", torch::kCUDA, &gptq_gemm);

  m.def("gptq_shuffle(Tensor! q_weight, Tensor q_perm, int bit) -> ()");
  m.impl("gptq_shuffle", torch::kCUDA, &gptq_shuffle);

  m.def("gptq_marlin_repack(Tensor! b_q_weight, Tensor! perm, int size_k, int size_n, int num_bits) -> Tensor");
  m.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack);

  m.def("awq_marlin_repack(Tensor! b_q_weight, int size_k, int size_n, int num_bits) -> Tensor");
  m.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack);
199

200
201
202
  /*
   * From csrc/moe
   */
203
204
  m.def(
      "moe_align_block_size(Tensor topk_ids, int num_experts, int block_size, Tensor! sorted_token_ids, Tensor! "
205
      "experts_ids, Tensor! num_tokens_post_pad, Tensor! cumsum_buffer, bool "
206
      "pad_sorted_token_ids) -> ()");
207
208
  m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);

209
  m.def("topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor gating_output, bool renormalize) -> ()");
210
  m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
211

212
  m.def(
213
      "moe_fused_gate(Tensor input, Tensor bias, int num_expert_group, int topk_group, int topk, int "
214
      "num_fused_shared_experts, float routed_scaling_factor, bool apply_routed_scaling_factor_on_output) -> "
215
216
      "(Tensor[])");
  m.impl("moe_fused_gate", torch::kCUDA, &moe_fused_gate);
217
  m.def(
218
219
      "ep_moe_pre_reorder(Tensor input, Tensor gateup_input, Tensor src2dst, Tensor topk_ids, Tensor "
      "a1_scales, int start_expert_id, int end_expert_id, int topk, bool use_per_token_if_dynamic) -> ()");
220
  m.impl("ep_moe_pre_reorder", torch::kCUDA, &ep_moe_pre_reorder);
221
222
223
224
  m.def(
      "ep_moe_silu_and_mul(Tensor gateup_output, Tensor down_input, Tensor reorder_topk_ids, Tensor scales, int "
      "start_expert_id, int end_expert_id) -> ()");
  m.impl("ep_moe_silu_and_mul", torch::kCUDA, &ep_moe_silu_and_mul);
225
226
227
228
  m.def(
      "ep_moe_post_reorder(Tensor down_output, Tensor output, Tensor src2dst, Tensor topk_ids, Tensor "
      "topk_weights, int start_expert_id, int end_expert_id, int topk) -> ()");
  m.impl("ep_moe_post_reorder", torch::kCUDA, &ep_moe_post_reorder);
229
  m.def(
230
231
      "fp8_blockwise_scaled_grouped_mm(Tensor output, Tensor a_ptrs, Tensor b_ptrs, Tensor out_ptrs, Tensor "
      "a_scales_ptrs, Tensor b_scales_ptrs, Tensor a, Tensor b, Tensor scales_a, Tensor scales_b, Tensor "
232
      "stride_a, Tensor stride_b, Tensor stride_c, Tensor layout_sfa, Tensor layout_sfb, Tensor problem_sizes, Tensor "
233
      "expert_offsets, Tensor workspace) -> ()");
234
  m.impl("fp8_blockwise_scaled_grouped_mm", torch::kCUDA, &fp8_blockwise_scaled_grouped_mm);
235
  m.def(
236
237
238
      "prepare_moe_input(Tensor topk_ids, Tensor expert_offsets, Tensor? blockscale_offsets, Tensor problem_sizes1,"
      " Tensor problem_sizes2, Tensor input_permutation, Tensor output_permutation, int num_experts, int n, int k) -> "
      "()");
239
  m.impl("prepare_moe_input", torch::kCUDA, &prepare_moe_input);
240
241
242

  m.def("shuffle_rows(Tensor input, Tensor dst2src_map, Tensor output) -> ()");
  m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
243
244
  m.def("apply_shuffle_mul_sum(Tensor input, Tensor output, Tensor permutation, Tensor? factors) -> ()");
  m.impl("apply_shuffle_mul_sum", torch::kCUDA, &apply_shuffle_mul_sum);
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  /*
   * From csrc/moe/marlin_moe_wna16
   */
  m.def(
      "moe_wna16_marlin_gemm(Tensor! a, Tensor? c_or_none,"
      "Tensor! b_q_weight, Tensor! b_scales, Tensor? b_zeros_or_none,"
      "Tensor? g_idx_or_none, Tensor? perm_or_none, Tensor! workspace,"
      "Tensor sorted_token_ids,"
      "Tensor! expert_ids, Tensor! num_tokens_past_padded,"
      "Tensor! topk_weights, int moe_block_size, int top_k, "
      "bool mul_topk_weights, bool is_ep, int b_q_type_id,"
      "int size_m, int size_n, int size_k,"
      "bool is_k_full, bool use_atomic_add,"
      "bool use_fp32_reduce, bool is_zp_float) -> Tensor");
  m.impl("moe_wna16_marlin_gemm", torch::kCUDA, &moe_wna16_marlin_gemm);

  /*
   * From csrc/moe/cutlass_moe/w4a8
   */
  m.def(
      "get_cutlass_w4a8_moe_mm_data(Tensor topk_ids, Tensor! expert_offsets, "
      "                        Tensor! problem_sizes1, Tensor! problem_sizes2, "
      "                        Tensor! input_permutation, "
      "                        Tensor! output_permutation, int num_experts, "
      "                        int n, int k) -> ()");
  m.impl("get_cutlass_w4a8_moe_mm_data", torch::kCUDA, &get_cutlass_w4a8_moe_mm_data);

  m.def(
      "cutlass_w4a8_moe_mm(Tensor! d, Tensor a, Tensor b, "
      "               Tensor a_scales, Tensor b_scales, Tensor expert_offsets, "
      "               Tensor problem_sizes, Tensor a_strides, "
      "               Tensor b_strides, Tensor d_strides, Tensor s_strides,"
      "               int chunk_size, int topk) -> ()");
  m.impl("cutlass_w4a8_moe_mm", torch::kCUDA, &cutlass_w4a8_moe_mm);

281
282
283
  /*
   * From csrc/speculative
   */
284
285
286
  m.def(
      "tree_speculative_sampling_target_only(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
287
      "Tensor uniform_samples, Tensor uniform_samples_for_final_sampling, Tensor target_probs, Tensor draft_probs, "
288
289
290
291
292
293
294
295
296
297
298
299
300
      "float threshold_single, float threshold_acc, "
      "bool deterministic, int cuda_stream) -> ()");
  m.impl("tree_speculative_sampling_target_only", torch::kCUDA, &tree_speculative_sampling_target_only);

  m.def(
      "verify_tree_greedy(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "Tensor target_predict, int cuda_stream) -> ()");
  m.impl("verify_tree_greedy", torch::kCUDA, &verify_tree_greedy);

  m.def(
      "build_tree_kernel_efficient(Tensor parent_list, Tensor selected_index, Tensor verified_seq_len, "
      "Tensor! tree_mask, Tensor! positions, Tensor! retrive_index, Tensor! retrive_next_token, "
301
302
      "Tensor! retrive_next_sibling, int topk, int depth, int draft_token_num, int tree_mask_mode) -> "
      "()");
303
304
  m.impl("build_tree_kernel_efficient", torch::kCUDA, &build_tree_kernel_efficient);

305
306
307
  m.def(
      "segment_packbits(Tensor x, Tensor input_indptr, Tensor output_indptr, Tensor! y, int batch_size, "
      "int cuda_stream) -> ()");
308
  m.impl("segment_packbits", torch::kCUDA, &segment_packbits);
309

310
311
312
313
314
315
316
317
  /*
   * From csrc/kvcacheio
   */
  m.def(
      "transfer_kv_per_layer(Tensor src_k, Tensor dst_k, Tensor src_v, Tensor dst_v, Tensor src_indices, Tensor "
      "dst_indices, int item_size, int block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_per_layer", torch::kCUDA, &transfer_kv_per_layer);
  m.def(
318
      "transfer_kv_per_layer_pf_lf(Tensor src_k, Tensor dst_k, Tensor src_v, Tensor dst_v, Tensor src_indices, Tensor "
319
      "dst_indices, int layer_id, int item_size, int src_layout_dim, int block_quota, int num_warps_per_block) -> ()");
320
  m.impl("transfer_kv_per_layer_pf_lf", torch::kCUDA, &transfer_kv_per_layer_pf_lf);
321
  m.def(
322
323
      "transfer_kv_all_layer(Tensor src_k_layers, Tensor dst_k_layers, Tensor src_v_layers, Tensor dst_v_layers, "
      "Tensor src_indices, Tensor dst_indices, int item_size, int num_layers, int block_quota, int "
324
325
326
      "num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer", torch::kCUDA, &transfer_kv_all_layer);
  m.def(
327
328
329
330
      "transfer_kv_all_layer_lf_pf(Tensor src_k_layers, Tensor dst_k, Tensor src_v_layers, Tensor dst_v, "
      "Tensor src_indices, Tensor dst_indices, int item_size, int dst_layout_dim, int num_layers, int block_quota, int "
      "num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer_lf_pf", torch::kCUDA, &transfer_kv_all_layer_lf_pf);
331
332
333
334
335
  m.def(
      "transfer_kv_per_layer_mla(Tensor src, Tensor dst, Tensor src_indices, Tensor dst_indices, int item_size, int "
      "block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_per_layer_mla", torch::kCUDA, &transfer_kv_per_layer_mla);
  m.def(
336
337
      "transfer_kv_per_layer_mla_pf_lf(Tensor src, Tensor dst, Tensor src_indices, Tensor dst_indices, int layer_id, "
      "int item_size, int src_layout_dim, int block_quota, int num_warps_per_block) -> ()");
338
  m.impl("transfer_kv_per_layer_mla_pf_lf", torch::kCUDA, &transfer_kv_per_layer_mla_pf_lf);
339
  m.def(
340
341
      "transfer_kv_all_layer_mla(Tensor src_layers, Tensor dst_layers, Tensor src_indices, Tensor dst_indices, int "
      "item_size, int num_layers, int block_quota, int num_warps_per_block) -> ()");
342
343
  m.impl("transfer_kv_all_layer_mla", torch::kCUDA, &transfer_kv_all_layer_mla);
  m.def(
344
345
346
347
348
349
350
      "transfer_kv_all_layer_mla_lf_pf(Tensor src_layers, Tensor dst, Tensor src_indices, Tensor dst_indices, "
      "int item_size, int dst_layout_dim, int num_layers, int block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer_mla_lf_pf", torch::kCUDA, &transfer_kv_all_layer_mla_lf_pf);
  m.def(
      "transfer_kv_direct(Tensor[] src_layers, Tensor[] dst_layers, Tensor src_indices, Tensor dst_indices, int "
      "page_size) -> ()");
  m.impl("transfer_kv_direct", torch::kCUDA, &transfer_kv_direct);
351

Lianmin Zheng's avatar
Lianmin Zheng committed
352
353
354
355
356
357
  /*
   * From csrc/memory
   */
  m.def("store_kv_cache(Tensor k_cache, Tensor v_cache, Tensor out_loc, Tensor k, Tensor v) -> ()");
  m.impl("store_kv_cache", &store_kv_cache);

358
359
360
  /*
   * From FlashInfer
   */
Yineng Zhang's avatar
Yineng Zhang committed
361
362
  m.def(
      "bmm_fp8(Tensor A, Tensor B, Tensor! D, Tensor A_scale, Tensor B_scale, Tensor workspace_buffer, int "
363
364
      "cublas_handle, int cuda_stream) -> ()",
      {at::Tag::needs_fixed_stride_order});
Yineng Zhang's avatar
Yineng Zhang committed
365
  m.impl("bmm_fp8", torch::kCUDA, &bmm_fp8);
366
367

  m.def(
368
369
      "min_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? maybe_min_p_arr, float "
      "min_p_val, bool deterministic, Generator? gen) -> ()");
370
371
  m.impl("min_p_sampling_from_probs", torch::kCUDA, &min_p_sampling_from_probs);

372
  m.def("top_k_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_k_arr, int top_k_val) -> ()");
373
374
  m.impl("top_k_renorm_probs", torch::kCUDA, &top_k_renorm_probs);

375
  m.def("top_p_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_p_arr, float top_p_val) -> ()");
376
377
  m.impl("top_p_renorm_probs", torch::kCUDA, &top_p_renorm_probs);

378
379
380
381
382
  m.def(
      "top_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? "
      "maybe_top_p_arr, float top_p_val, bool deterministic, Generator? gen) -> ()");
  m.impl("top_p_sampling_from_probs", torch::kCUDA, &top_p_sampling_from_probs);

383
  m.def(
384
385
      "top_k_top_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? maybe_top_k_arr, "
      "float top_k_val, Tensor? maybe_top_p_arr, float top_p_val, bool deterministic, Generator? gen) -> ()");
386
387
  m.impl("top_k_top_p_sampling_from_probs", torch::kCUDA, &top_k_top_p_sampling_from_probs);

388
389
390
  m.def("top_k_mask_logits(Tensor logits, Tensor mask_logits, Tensor? maybe_top_k_arr, int top_k_val) -> ()");
  m.impl("top_k_mask_logits", torch::kCUDA, &top_k_mask_logits);

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
  /*
   * From Sparse Flash Attention
   */
  m.def(
      "fwd_sparse(Tensor! q, Tensor k, Tensor v, "
      "Tensor block_count, Tensor block_offset, Tensor column_count, Tensor column_index, "
      "Tensor!? out, Tensor? alibi_slopes, "
      "float p_dropout, float softmax_scale, bool is_causal, "
      "float softcap, bool return_softmax, Generator? gen)"
      "-> Tensor[]");
  m.impl("fwd_sparse", torch::kCUDA, &flash::mha_fwd_sparse);

  m.def(
      "varlen_fwd_sparse(Tensor! q, Tensor k, Tensor v, "
      "Tensor block_count, Tensor block_offset, Tensor column_count, Tensor column_index, "
      "Tensor!? out, Tensor cu_seqlens_q, "
      "Tensor cu_seqlens_k, Tensor? seqused_k, Tensor? alibi_slopes, "
      "int max_seqlen_q, int max_seqlen_k, float p_dropout, float softmax_scale, bool zero_tensors, "
      "bool is_causal, float softcap, bool return_softmax, "
      "Generator? gen) -> Tensor[]");
  m.impl("varlen_fwd_sparse", torch::kCUDA, &flash::mha_varlen_fwd_sparse);
412

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
  // Sparse Attention utils
  m.def(
      "convert_vertical_slash_indexes("
      "   Tensor! block_count, Tensor! block_offset, "
      "   Tensor! column_count, Tensor! column_index, "
      "   Tensor q_seqlens, Tensor q_seqlens, "
      "   Tensor vertical_indexes, Tensor slash_indexes, "
      "   int context_size, int block_size_M, int block_size_N, "
      "   bool causal) -> ()");
  m.impl("convert_vertical_slash_indexes", torch::kCUDA, &convert_vertical_slash_indexes);

  m.def(
      "convert_vertical_slash_indexes_mergehead("
      "   Tensor! block_count, Tensor! block_offset, "
      "   Tensor! column_count, Tensor! column_index, "
      "   Tensor q_seqlens, Tensor q_seqlens, "
      "   Tensor vertical_indexes, Tensor slash_indexes, "
      "   Tensor vertical_indices_count, Tensor slash_indices_count, "
      "   int context_size, int block_size_M, int block_size_N, "
      "   bool causal) -> ()");
  m.impl("convert_vertical_slash_indexes_mergehead", torch::kCUDA, &convert_vertical_slash_indexes_mergehead);

435
  /*
Lianmin Zheng's avatar
Lianmin Zheng committed
436
   * From csrc/grammar
437
438
439
   */
  m.def("apply_token_bitmask_inplace_cuda(Tensor logits, Tensor bitmask, Tensor? indices=None) -> ()");
  m.impl("apply_token_bitmask_inplace_cuda", &ApplyTokenBitmaskInplace);
HandH1998's avatar
HandH1998 committed
440
441

  /*
Lianmin Zheng's avatar
Lianmin Zheng committed
442
   * From csrc/gemm (QServe)
HandH1998's avatar
HandH1998 committed
443
444
445
446
447
448
449
450
451
452
   */
  m.def(
      "qserve_w4a8_per_chn_gemm(Tensor _in_feats, Tensor _kernel, Tensor _wscales, Tensor _ascales, Tensor _w_szs, "
      "Tensor _a_ssums, Tensor! _out_feats) -> ()");
  m.impl("qserve_w4a8_per_chn_gemm", torch::kCUDA, &qserve_w4a8_per_chn_gemm);

  m.def(
      "qserve_w4a8_per_group_gemm(Tensor _in_feats, Tensor _kernel, Tensor _zeros, Tensor _scales_i8, Tensor _wscales, "
      "Tensor _ascales, Tensor! _out_feats) -> ()");
  m.impl("qserve_w4a8_per_group_gemm", torch::kCUDA, &qserve_w4a8_per_group_gemm);
453
454
}

455
REGISTER_EXTENSION(common_ops)