"tools/model_converters/convert_h3dnet_checkpoints.py" did not exist on "90f21a595ef69be367a63362ea31bdf2a83b3e5d"
mixtral.py 13.5 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Adapted from
# https://github.com/vllm-project/vllm/blob/d0215a58e78572d91dadafe9d832a2db89b09a13/vllm/model_executor/models/mixtral.py#L1
"""Inference-only Mixtral model."""
from typing import List, Optional, Tuple

import numpy as np
import torch
import torch.nn.functional as F
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.managers.router.model_runner import InputMetadata
from torch import nn
from transformers import MixtralConfig
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
    LinearMethodBase,
    QKVParallelLinear,
    ReplicatedLinear,
    RowParallelLinear,
)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
    ParallelLMHead,
    VocabParallelEmbedding,
)
from vllm.model_executor.parallel_utils.communication_op import (
    tensor_model_parallel_all_reduce,
)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
)
from vllm.model_executor.weight_utils import (
    default_weight_loader,
    hf_model_weights_iterator,
)


class MixtralMLP(nn.Module):
    def __init__(
        self,
        num_experts: int,
        hidden_size: int,
        intermediate_size: int,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.num_experts = num_experts
        self.ffn_dim = intermediate_size
        self.hidden_dim = hidden_size

        self.w1 = ReplicatedLinear(
            self.hidden_dim, self.ffn_dim, bias=False, linear_method=linear_method
        )
        self.w2 = ReplicatedLinear(
            self.ffn_dim, self.hidden_dim, bias=False, linear_method=linear_method
        )
        self.w3 = ReplicatedLinear(
            self.hidden_dim, self.ffn_dim, bias=False, linear_method=linear_method
        )

        # TODO: Use vllm's SiluAndMul
        self.act_fn = nn.SiLU()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        w1_out, _ = self.w1(hidden_states)
        w1_out = self.act_fn(w1_out)
        w3_out, _ = self.w3(hidden_states)
        current_hidden_states = w1_out * w3_out
        current_hidden_states, _ = self.w2(current_hidden_states)
        return current_hidden_states


class MixtralMoE(nn.Module):
    def __init__(
        self,
        config: MixtralConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ):
        super().__init__()
        self.config = config
        self.rank = get_tensor_model_parallel_rank()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.num_total_experts = config.num_local_experts
        self.top_k = config.num_experts_per_tok
        if self.tp_size > self.num_total_experts:
            raise ValueError(
                f"Tensor parallel size {self.tp_size} is greater than "
                f"the number of experts {self.num_total_experts}."
            )
        # Split experts equally between ranks
        self.expert_indicies = np.array_split(
            range(self.num_total_experts), self.tp_size
        )[self.rank].tolist()
        if not self.expert_indicies:
            raise ValueError(f"Rank {self.rank} has no experts assigned to it.")

        self.experts = nn.ModuleList(
            [
                MixtralMLP(
                    self.num_total_experts,
                    config.hidden_size,
                    config.intermediate_size,
                    linear_method=linear_method,
                )
                if idx in self.expert_indicies
                else None
                for idx in range(self.num_total_experts)
            ]
        )
        self.gate = ReplicatedLinear(
            config.hidden_size, self.num_total_experts, bias=False, linear_method=None
        )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        router_logits, _ = self.gate(hidden_states)

        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        routing_weights, selected_experts = torch.topk(
            routing_weights, self.top_k, dim=-1
        )
        routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

        final_hidden_states = None
        for expert_idx in self.expert_indicies:
            expert_layer = self.experts[expert_idx]
            expert_mask = selected_experts == expert_idx
            expert_weights = (routing_weights * expert_mask).sum(dim=-1, keepdim=True)

            current_hidden_states = expert_layer(hidden_states).mul_(expert_weights)
            if final_hidden_states is None:
                final_hidden_states = current_hidden_states
            else:
                final_hidden_states.add_(current_hidden_states)

        return tensor_model_parallel_all_reduce(final_hidden_states)


class MixtralAttention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        layer_id: int = 0,
        max_position: int = 4096 * 32,
        rope_theta: float = 10000,
        linear_method: Optional[LinearMethodBase] = None,
        sliding_window: Optional[int] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta
        self.sliding_window = sliding_window

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
            linear_method=linear_method,
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            linear_method=linear_method,
        )
        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position,
            base=int(self.rope_theta),
            is_neox_style=True,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, input_metadata)
        output, _ = self.o_proj(attn_output)
        return output


class MixtralDecoderLayer(nn.Module):
    def __init__(
        self,
        config: MixtralConfig,
        layer_id: int = 0,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        # Requires transformers > 4.32.0
        rope_theta = getattr(config, "rope_theta", 10000)
        self.self_attn = MixtralAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            max_position=config.max_position_embeddings,
            num_kv_heads=config.num_key_value_heads,
            layer_id=layer_id,
            rope_theta=rope_theta,
            sliding_window=config.sliding_window,
            linear_method=linear_method,
        )
        self.block_sparse_moe = MixtralMoE(config=config, linear_method=linear_method)
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            input_metadata=input_metadata,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.block_sparse_moe(hidden_states)
        return hidden_states, residual


class MixtralModel(nn.Module):
    def __init__(
        self,
        config: MixtralConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        # config.num_hidden_layers=16
        self.layers = nn.ModuleList(
            [
                MixtralDecoderLayer(config, i, linear_method=linear_method)
                for i in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
        skip_embed: bool = False,
    ) -> torch.Tensor:
        if not skip_embed:
            hidden_states = self.embed_tokens(input_ids)
        else:
            hidden_states = input_ids
        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions, hidden_states, input_metadata, residual
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class MixtralForCausalLM(nn.Module):
    def __init__(
        self,
        config: MixtralConfig,
        linear_method: Optional[LinearMethodBase] = None,
    ) -> None:
        super().__init__()
        self.config = config
        self.linear_method = linear_method
        self.model = MixtralModel(config, linear_method)
        self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
        self.logits_processor = LogitsProcessor(config)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
        skip_embed: bool = False,
    ) -> torch.Tensor:
        hidden_states = self.model(input_ids, positions, input_metadata, skip_embed)
        return self.logits_processor(
            input_ids, hidden_states, self.lm_head.weight, input_metadata
        )

    def load_weights(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
        load_format: str = "auto",
        revision: Optional[str] = None,
    ):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
        ]

        params_dict = dict(self.named_parameters())
        for name, loaded_weight in hf_model_weights_iterator(
354
355
356
357
358
            model_name_or_path,
            cache_dir,
            load_format,
            revision,
            fall_back_to_pt=False,
Lianmin Zheng's avatar
Lianmin Zheng committed
359
360
361
        ):
            if "rotary_emb.inv_freq" in name:
                continue
shiyi.c_98's avatar
shiyi.c_98 committed
362
            for param_name, weight_name, shard_id in stacked_params_mapping:
Lianmin Zheng's avatar
Lianmin Zheng committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                # Skip experts that are not assigned to this worker.
                if "block_sparse_moe.experts." in name and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
Cody Yu's avatar
Cody Yu committed
383

Lianmin Zheng's avatar
Lianmin Zheng committed
384

Cody Yu's avatar
Cody Yu committed
385
EntryClass = MixtralForCausalLM