".github/vscode:/vscode.git/clone" did not exist on "8eb45690e3970815332ebf2f2bcc8c3371536c2a"
_fa4_interface.py 18.9 KB
Newer Older
Johnny's avatar
Johnny committed
1
# Adapted from https://github.com/Dao-AILab/flash-attention/blob/54d8aa6751fc9d5f0357854079261913d5df1f9d/flash_attn/cute/interface.py
2
3

# Copyright (c) 2025, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
Johnny's avatar
Johnny committed
4
# [2025-10-14] Version in Cute-DSL, for Hopper and Blackwell. You'd need to install nvidia-cutlass-dsl==4.2.1.
5
6


7
8
9
import copy
import gc
import logging
10
import math
11
import os
Johnny's avatar
Johnny committed
12
from typing import Callable, Optional, Tuple
13

14
15
16
logger = logging.getLogger(__name__)


17
18
19
20
21
import cuda.bindings.driver as cuda
import cutlass
import cutlass.cute as cute
import torch
from cutlass.cute.runtime import from_dlpack
Johnny's avatar
Johnny committed
22
from flash_attn.cute import utils
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from flash_attn.cute.flash_fwd import FlashAttentionForwardSm90
from flash_attn.cute.flash_fwd_sm100 import FlashAttentionForwardSm100


def maybe_contiguous(x):
    return x.contiguous() if x is not None and x.stride(-1) != 1 else x


torch2cute_dtype_map = {
    torch.float16: cutlass.Float16,
    torch.bfloat16: cutlass.BFloat16,
    torch.float32: cutlass.Float32,
}


def _flash_attn_fwd(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    cu_seqlens_q: Optional[torch.Tensor] = None,
    cu_seqlens_k: Optional[torch.Tensor] = None,
    seqused_q: Optional[torch.Tensor] = None,
    seqused_k: Optional[torch.Tensor] = None,
    page_table: Optional[torch.Tensor] = None,
    softmax_scale: Optional[float] = None,
    causal: bool = False,
    softcap: Optional[float] = None,
    window_size_left: Optional[int] = None,
    window_size_right: Optional[int] = None,
    learnable_sink: Optional[torch.Tensor] = None,
    # m_block_size: int = 128,
    # n_block_size: int = 64,
    # num_threads: int = 128,
    m_block_size: int = 128,
    n_block_size: int = 128,
    num_threads: int = 384,
    pack_gqa: Optional[bool] = None,
    _compute_capability: Optional[int] = None,
Johnny's avatar
Johnny committed
61
62
63
64
65
    score_mod: Callable | None = None,
    return_lse: bool = False,
    out: Optional[torch.Tensor] = None,
    lse: Optional[torch.Tensor] = None,
    buffers: Optional[list[torch.Tensor]] = None,
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
) -> Tuple[torch.Tensor, torch.Tensor]:
    q, k, v = [maybe_contiguous(t) for t in (q, k, v)]
    num_head, head_dim = q.shape[-2:]
    if cu_seqlens_q is None:
        batch_size, seqlen_q = q.shape[:2]
        total_q = batch_size * seqlen_q
    else:
        batch_size = cu_seqlens_q.shape[0] - 1
        seqlen_q = None
        total_q = q.shape[0]
    if page_table is not None:
        assert cu_seqlens_k is None, "page_table is not supported with cu_seqlens_k"
        assert page_table.dtype == torch.int32, "page_table must be int32"
        assert (
            page_table.stride(-1) == 1
        ), "page_table must be contiguous in the last dimension"
        max_num_pages_per_seq = page_table.shape[1]
        assert page_table.shape == (batch_size, max_num_pages_per_seq)
        num_pages, page_size = k.shape[:2]
        seqlen_k = num_pages * page_size
    else:
        num_pages, page_size = None, None
        seqlen_k = k.shape[-3]
    num_head_kv = k.shape[-2]
    head_dim_v = v.shape[-1]
    if cu_seqlens_k is None:
        if page_table is None:
            assert k.shape == (batch_size, seqlen_k, num_head_kv, head_dim)
            assert v.shape == (batch_size, seqlen_k, num_head_kv, head_dim_v)
        else:
            assert k.shape == (num_pages, page_size, num_head_kv, head_dim)
            assert v.shape == (num_pages, page_size, num_head_kv, head_dim_v)
    else:
        assert k.shape == (seqlen_k, num_head_kv, head_dim)
        assert v.shape == (seqlen_k, num_head_kv, head_dim_v)
        assert cu_seqlens_k.shape == (
            batch_size + 1,
        ), "cu_seqlens_k must have shape (batch_size + 1,)"
    if cu_seqlens_q is not None:
        assert cu_seqlens_q.shape == (
            batch_size + 1,
        ), "cu_seqlens_q must have shape (batch_size + 1,)"
    assert seqused_q is None or seqused_q.shape == (
        batch_size,
    ), "seqused_q must have shape (batch_size,)"
    assert seqused_k is None or seqused_k.shape == (
        batch_size,
    ), "seqused_k must have shape (batch_size,)"
    assert q.dtype in [
        torch.float16,
        torch.bfloat16,
    ], "inputs must be float16 or bfloat16"
    assert q.dtype == k.dtype == v.dtype, "inputs must have the same dtype"
    for t in [cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k]:
        if t is not None:
            assert (
                t.dtype == torch.int32
            ), "cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k must be int32"
            assert (
                t.stride(0) == 1
            ), "cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k must be contiguous"
    if learnable_sink is not None:
        assert learnable_sink.shape == (num_head,)
        assert learnable_sink.dtype == torch.bfloat16, "learnable_sink must be bfloat16"
    assert all(
        t is None or t.is_cuda
        for t in (
            q,
            k,
            v,
            cu_seqlens_q,
            cu_seqlens_k,
            seqused_q,
            seqused_k,
            page_table,
            learnable_sink,
        )
    ), "inputs must be on CUDA device"
    assert num_head % num_head_kv == 0, "num_head must be divisible by num_head_kv"
    assert head_dim <= 256, "head_dim must be less than or equal to 256"
    alignment = 16 // q.element_size()
    assert head_dim % alignment == 0, f"head_dim must be divisible by {alignment}"
    assert head_dim_v % alignment == 0, f"head_dim_v must be divisible by {alignment}"
    if softmax_scale is None:
        softmax_scale = 1.0 / math.sqrt(head_dim)
    if softcap == 0.0:
        softcap = None
    qhead_per_kvhead = num_head // num_head_kv
    if pack_gqa is None:
        pack_gqa = qhead_per_kvhead > 1

    out_torch_dtype = q.dtype
    device = q.device
    q_batch_seqlen_shape = (
        (batch_size, seqlen_q) if cu_seqlens_q is None else (total_q,)
    )
    lse_shape = (
        (batch_size, num_head, seqlen_q)
        if cu_seqlens_q is None
        else (num_head, total_q)
    )
Johnny's avatar
Johnny committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    requires_grad = q.requires_grad or k.requires_grad or v.requires_grad

    if out is None:
        out = torch.empty(
            *q_batch_seqlen_shape,
            num_head,
            head_dim_v,
            dtype=out_torch_dtype,
            device=device,
        )
    else:
        expected_out_shape = (*q_batch_seqlen_shape, num_head, head_dim_v)
        assert (
            out.shape == expected_out_shape
        ), f"out tensor shape {out.shape} does not match expected shape {expected_out_shape}"
        assert (
            out.dtype == out_torch_dtype
        ), f"out tensor dtype {out.dtype} does not match expected dtype {out_torch_dtype}"
        assert (
            out.device == device
        ), f"out tensor device {out.device} does not match input device {device}"
        assert out.is_cuda, "out tensor must be on CUDA device"

    if lse is None:
        lse = (
            torch.empty(lse_shape, dtype=torch.float32, device=device)
            if requires_grad or return_lse
            else None
        )
    elif lse is not None:
        assert (
            lse.shape == lse_shape
        ), f"lse tensor shape {lse.shape} does not match expected shape {lse_shape}"
        assert (
            lse.dtype == torch.float32
        ), f"lse tensor dtype {lse.dtype} does not match expected dtype torch.float32"
        assert (
            lse.device == device
        ), f"lse tensor device {lse.device} does not match input device {device}"
        assert lse.is_cuda, "lse tensor must be on CUDA device"
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

    dtype = torch2cute_dtype_map[q.dtype]
    q_tensor, k_tensor, v_tensor, o_tensor = [
        from_dlpack(t.detach(), assumed_align=16).mark_layout_dynamic(
            leading_dim=t.ndim - 1
        )
        for t in (q, k, v, out)
    ]
    lse_tensor = (
        from_dlpack(lse.detach(), assumed_align=4).mark_layout_dynamic(
            leading_dim=lse.ndim - 1
        )
        if lse is not None
        else None
    )
    (
        cu_seqlens_q_tensor,
        cu_seqlens_k_tensor,
        seqused_q_tensor,
        seqused_k_tensor,
        learnable_sink_tensor,
    ) = [
        (
            from_dlpack(t.detach(), assumed_align=4).mark_layout_dynamic(leading_dim=0)
            if t is not None
            else None
        )
        for t in (cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, learnable_sink)
    ]
    page_table_tensor = (
        from_dlpack(page_table.detach(), assumed_align=4).mark_layout_dynamic(
            leading_dim=1
        )
        if page_table is not None
        else None
    )
    if causal:
        window_size_right = 0
    local = window_size_left is not None or window_size_right is not None
    if window_size_left is not None or window_size_right is not None:
        if window_size_left is None and window_size_right == 0:
            causal, local = True, False
        else:
            causal, local = False, True
    compute_capability = (
        torch.cuda.get_device_capability()[0]
        if _compute_capability is None
        else _compute_capability
    )
    assert compute_capability in [
        9,
        10,
    ], "Unsupported compute capability. Supported: 9.x, 10.x"
    current_stream = cuda.CUstream(torch.cuda.current_stream().cuda_stream)

    if compute_capability == 9:  # TODO: tune block size according to hdim
Johnny's avatar
Johnny committed
263
        # Perf heuristic from upstream: hdim=128, noncausal, non-local benefits from larger n_block
264
265
266
267
268
269
270
271
272
273
274
        if head_dim == head_dim_v == 128 and not causal and not local:
            n_block_size = 192
    if compute_capability == 10:
        # TODO: fix the varlen case
        if (
            pack_gqa
            and (128 % qhead_per_kvhead != 0)
            or (cu_seqlens_q is not None or seqused_q is not None)
        ):
            pack_gqa = False

Johnny's avatar
Johnny committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    if softcap is not None:
        assert score_mod is None, "softcap and score_mod cannot be used together"
        score_mod = utils.create_softcap_scoremod(softcap)

    if score_mod is not None:
        is_varlen = (
            cu_seqlens_q is not None
            or cu_seqlens_k is not None
            or seqused_q is not None
            or seqused_k is not None
        )
        if is_varlen:
            raise NotImplementedError(
                "score_mod with buffers is not yet supported for varlen sequences. This will be fixed in a future PR."
            )

    cute_buffers = None
    if buffers is not None:
        cute_buffers = [from_dlpack(buf) for buf in buffers]

295
296
297
298
299
300
    compile_key = (
        dtype,
        head_dim,
        head_dim_v,
        qhead_per_kvhead,
        causal,
Johnny's avatar
Johnny committed
301
302
        utils.hash_callable(score_mod) if score_mod is not None else None,
        buffers is not None,
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        lse is None,
        cu_seqlens_q is None,
        cu_seqlens_k is None,
        seqused_q is None,
        seqused_k is None,
        page_table is not None,
        window_size_left is not None,
        window_size_right is not None,
        learnable_sink is not None,
        m_block_size,
        n_block_size,
        num_threads,
        pack_gqa,
        compute_capability,
    )
    if compile_key not in _flash_attn_fwd.compile_cache:
        if compute_capability == 9:
            assert page_table is None, "paged KV not supported on SM 9.0"
            # fa_fwd = FlashAttentionForwardSm80(
            fa_fwd = FlashAttentionForwardSm90(
                dtype,
                head_dim,
                head_dim_v,
                qhead_per_kvhead,
                is_causal=causal,
                is_local=local,
                pack_gqa=pack_gqa,
Johnny's avatar
Johnny committed
330
331
                tile_m=m_block_size,
                tile_n=n_block_size,
332
333
334
335
                # num_stages=1,
                num_stages=2,
                num_threads=num_threads,
                Q_in_regs=False,
Johnny's avatar
Johnny committed
336
337
                score_mod=score_mod,
                has_buffers=buffers is not None,
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
            )
        elif compute_capability == 10:
            assert page_size in [
                None,
                128,
            ], "Only page_size=128 is supported for paged KV on SM 10.0"
            fa_fwd = FlashAttentionForwardSm100(
                head_dim,
                head_dim_v,
                qhead_per_kvhead=qhead_per_kvhead,
                is_causal=causal,
                is_local=local,
                pack_gqa=pack_gqa,
                is_persistent=not causal
                and not local
                and cu_seqlens_q is None
                and seqused_q is None,
Johnny's avatar
Johnny committed
355
356
                score_mod=score_mod,
                has_buffers=buffers is not None,
357
358
359
360
361
362
            )
        else:
            raise ValueError(
                f"Unsupported compute capability: {compute_capability}. Supported: 9.x, 10.x"
            )
        # TODO: check @can_implement
Johnny's avatar
Johnny committed
363
        # TODO caching for buffers; cute_buffers
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        _flash_attn_fwd.compile_cache[compile_key] = cute.compile(
            fa_fwd,
            q_tensor,
            k_tensor,
            v_tensor,
            o_tensor,
            lse_tensor,
            softmax_scale,
            current_stream,
            cu_seqlens_q_tensor,
            cu_seqlens_k_tensor,
            seqused_q_tensor,
            seqused_k_tensor,
            page_table_tensor,
            window_size_left,
            window_size_right,
            learnable_sink_tensor,
Johnny's avatar
Johnny committed
381
            cute_buffers,
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        )
    _flash_attn_fwd.compile_cache[compile_key](
        q_tensor,
        k_tensor,
        v_tensor,
        o_tensor,
        lse_tensor,
        softmax_scale,
        current_stream,
        cu_seqlens_q_tensor,
        cu_seqlens_k_tensor,
        seqused_q_tensor,
        seqused_k_tensor,
        page_table_tensor,
        window_size_left,
        window_size_right,
        learnable_sink_tensor,
Johnny's avatar
Johnny committed
399
        cute_buffers,
400
401
402
403
404
    )
    return out, lse


_flash_attn_fwd.compile_cache = {}
405
406
407
408
409


def warmup_flash_attn(f):
    """
    Decorator for flash_attn_varlen_func:
Johnny's avatar
Johnny committed
410
411
412
413
414
415
416
417
418
    - On first call, run several warmup passes with different flag combinations:
        * return_softmax_lse in {False, True}
        * global noncausal (window_size=(None,None))
        * causal (window_size=(None,0))
        * local sliding window (window_size=(64,64))
        * optionally pack_gqa=True if qheads > kvheads and allowed
    - No score_mod / softcap (not supported for varlen yet)
    - Executes sequentially to minimize peak GPU mem
    - Does not modify user tensors (clones)
419
    """
420
421
422
423
424
425
426
427
428
    disable_warmup = os.getenv("SGLANG_DISABLE_FA4_WARMUP", "").lower() in (
        "1",
        "true",
        "yes",
        "on",
    )
    if disable_warmup:
        return f

429
430
431
432
433
434
435
    done = False

    def _clone_args(args, kwargs):
        """Clone tensor arguments to avoid sharing storage; deepcopy for others."""

        def maybe_clone(x):
            if isinstance(x, torch.Tensor):
Johnny's avatar
Johnny committed
436
                return x.detach().clone()  # detach to avoid autograd edges
437
438
439
440
441
442
            return copy.deepcopy(x)

        return tuple(maybe_clone(a) for a in args), {
            k: maybe_clone(v) for k, v in kwargs.items()
        }

Johnny's avatar
Johnny committed
443
444
445
446
447
448
449
450
451
452
453
454
    def _infer_heads(args, kwargs):
        """Infer q and kv head counts from arguments."""
        # Expect signature: (q, k, v, cu_seqlens_q, cu_seqlens_k, ...)
        q = args[0] if len(args) > 0 else kwargs.get("q")
        k = args[1] if len(args) > 1 else kwargs.get("k")
        try:
            qh = int(q.shape[-2])
            kvh = int(k.shape[-2])
            return qh, kvh
        except Exception:
            return None, None

455
456
457
458
    def _run_warmups(args, kwargs):
        """Run warmup calls sequentially and release memory after each."""
        base_args, base_kwargs = _clone_args(args, kwargs)

Johnny's avatar
Johnny committed
459
460
461
462
463
464
465
466
467
468
469
470
471
        qh, kvh = _infer_heads(base_args, base_kwargs)
        can_pack_gqa = (
            qh is not None and kvh is not None and qh % kvh == 0 and qh // kvh > 1
        )
        has_page_table = (
            "page_table" in base_kwargs and base_kwargs["page_table"] is not None
        )

        # Window presets covering global, causal, and local
        window_presets = [
            (None, None),  # global noncausal
            (None, 0),  # causal
            (64, 64),  # local sliding window
472
473
        ]

Johnny's avatar
Johnny committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        lse_flags = [False, True]

        # Base combo list
        combos = []
        for ws in window_presets:
            for return_lse_flag in lse_flags:
                combos.append(dict(window_size=ws, return_softmax_lse=return_lse_flag))

        # Optionally add a pack_gqa=True variant (FA4 may disable it internally for some varlen shapes/SMs)
        if can_pack_gqa:
            for ws in window_presets:
                combos.append(
                    dict(window_size=ws, return_softmax_lse=False, pack_gqa=True)
                )

        # If page_table is present, warm one combo with it (page_table in compile key for SM100)
        if has_page_table:
            combos.append(dict(window_size=(None, None), return_softmax_lse=False))

        # Run sequentially
494
495
        for combo in combos:
            wa, wk = _clone_args(base_args, base_kwargs)
Johnny's avatar
Johnny committed
496
497
498
499
500
            # Keep user-provided softcap/score_mod OUT (varlen+score_mod unsupported)
            wk.pop("score_mod", None)
            if "softcap" in wk and wk["softcap"]:
                wk["softcap"] = 0.0
            # Apply combo
501
502
            wk.update(combo)
            with torch.cuda.stream(torch.cuda.current_stream()):
Johnny's avatar
Johnny committed
503
504
505
506
507
                try:
                    f(*wa, **wk)
                except Exception as e:
                    # Some combos can be invalid for specific head dims / arch. Ignore and continue.
                    logger.debug("Warmup combo skipped: %s", e)
508
509
510
511
512
513
514
            del wa, wk
            torch.cuda.empty_cache()
            gc.collect()

    def wrapper(*args, **kwargs):
        nonlocal done
        if not done:
Johnny's avatar
Johnny committed
515
516
517
            logger.info(
                "Running FA4 warmup (global/causal/local, LSE on/off, optional GQA pack)..."
            )
518
519
520
521
522
            _run_warmups(args, kwargs)
            done = True
        return f(*args, **kwargs)

    return wrapper
523
524


525
@warmup_flash_attn
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
def flash_attn_varlen_func(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    cu_seqlens_q: Optional[torch.Tensor] = None,
    cu_seqlens_k: Optional[torch.Tensor] = None,
    seqused_q: Optional[torch.Tensor] = None,
    seqused_k: Optional[torch.Tensor] = None,
    page_table: Optional[torch.Tensor] = None,
    softmax_scale: Optional[float] = None,
    causal: bool = False,
    window_size: Tuple[Optional[int], Optional[int]] = (None, None),
    learnable_sink: Optional[torch.Tensor] = None,
    softcap: float = 0.0,
    pack_gqa: Optional[bool] = None,
    return_softmax_lse: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
    out, lse = _flash_attn_fwd(
        q,
        k,
        v,
        cu_seqlens_q,
        cu_seqlens_k,
        seqused_q,
        seqused_k,
        page_table=page_table,
        softmax_scale=softmax_scale,
        causal=causal,
        window_size_left=window_size[0],
        window_size_right=window_size[1],
        learnable_sink=learnable_sink,
        softcap=softcap,
        pack_gqa=pack_gqa,
Johnny's avatar
Johnny committed
559
        return_lse=return_softmax_lse,
560
561
562
    )

    return (out, lse) if return_softmax_lse else out