_fa4_interface.py 15.2 KB
Newer Older
1
2
3
4
5
6
# Adapted from https://github.com/Dao-AILab/flash-attention/blob/203b9b3dba39d5d08dffb49c09aa622984dff07d/flash_attn/cute/interface.py

# Copyright (c) 2025, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
# [2025-07-04] Version in Cute-DSL, for Hopper and Blackwell. You'd need to install nvidia-cutlass-dsl==4.1.0.


7
8
9
import copy
import gc
import logging
10
11
12
import math
from typing import Optional, Tuple

13
14
15
logger = logging.getLogger(__name__)


16
17
18
19
20
21
22
23
24
25
26
27
28
import cuda.bindings.driver as cuda
import cutlass
import cutlass.cute as cute
import torch
from cutlass.cute.runtime import from_dlpack
from flash_attn.cute.flash_fwd import FlashAttentionForwardSm90
from flash_attn.cute.flash_fwd_sm100 import FlashAttentionForwardSm100


def maybe_contiguous(x):
    return x.contiguous() if x is not None and x.stride(-1) != 1 else x


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def _reason_recompile(compile_key, jit_func):
    compile_cache = jit_func.compile_cache
    compile_key_map = jit_func.compile_key_map
    if not compile_cache:
        return "not compiled yet"
    for k, v in compile_cache.items():
        if k == compile_key:
            continue
        if len(k) != len(compile_key):
            continue
        for i in range(len(k)):
            if k[i] != compile_key[i]:
                return f"diff at '{compile_key_map[i]}': {k[i]} vs {compile_key[i]} "
    return "unknown reason"


45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
torch2cute_dtype_map = {
    torch.float16: cutlass.Float16,
    torch.bfloat16: cutlass.BFloat16,
    torch.float32: cutlass.Float32,
}


def _flash_attn_fwd(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    cu_seqlens_q: Optional[torch.Tensor] = None,
    cu_seqlens_k: Optional[torch.Tensor] = None,
    seqused_q: Optional[torch.Tensor] = None,
    seqused_k: Optional[torch.Tensor] = None,
    page_table: Optional[torch.Tensor] = None,
    softmax_scale: Optional[float] = None,
    causal: bool = False,
    softcap: Optional[float] = None,
    window_size_left: Optional[int] = None,
    window_size_right: Optional[int] = None,
    learnable_sink: Optional[torch.Tensor] = None,
    # m_block_size: int = 128,
    # n_block_size: int = 64,
    # num_threads: int = 128,
    m_block_size: int = 128,
    n_block_size: int = 128,
    num_threads: int = 384,
    pack_gqa: Optional[bool] = None,
    _compute_capability: Optional[int] = None,
    return_softmax_lse: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
    q, k, v = [maybe_contiguous(t) for t in (q, k, v)]
    num_head, head_dim = q.shape[-2:]
    if cu_seqlens_q is None:
        batch_size, seqlen_q = q.shape[:2]
        total_q = batch_size * seqlen_q
    else:
        batch_size = cu_seqlens_q.shape[0] - 1
        seqlen_q = None
        total_q = q.shape[0]
    if page_table is not None:
        assert cu_seqlens_k is None, "page_table is not supported with cu_seqlens_k"
        assert page_table.dtype == torch.int32, "page_table must be int32"
        assert (
            page_table.stride(-1) == 1
        ), "page_table must be contiguous in the last dimension"
        max_num_pages_per_seq = page_table.shape[1]
        assert page_table.shape == (batch_size, max_num_pages_per_seq)
        num_pages, page_size = k.shape[:2]
        seqlen_k = num_pages * page_size
    else:
        num_pages, page_size = None, None
        seqlen_k = k.shape[-3]
    num_head_kv = k.shape[-2]
    head_dim_v = v.shape[-1]
    if cu_seqlens_k is None:
        if page_table is None:
            assert k.shape == (batch_size, seqlen_k, num_head_kv, head_dim)
            assert v.shape == (batch_size, seqlen_k, num_head_kv, head_dim_v)
        else:
            assert k.shape == (num_pages, page_size, num_head_kv, head_dim)
            assert v.shape == (num_pages, page_size, num_head_kv, head_dim_v)
    else:
        assert k.shape == (seqlen_k, num_head_kv, head_dim)
        assert v.shape == (seqlen_k, num_head_kv, head_dim_v)
        assert cu_seqlens_k.shape == (
            batch_size + 1,
        ), "cu_seqlens_k must have shape (batch_size + 1,)"
    if cu_seqlens_q is not None:
        assert cu_seqlens_q.shape == (
            batch_size + 1,
        ), "cu_seqlens_q must have shape (batch_size + 1,)"
    assert seqused_q is None or seqused_q.shape == (
        batch_size,
    ), "seqused_q must have shape (batch_size,)"
    assert seqused_k is None or seqused_k.shape == (
        batch_size,
    ), "seqused_k must have shape (batch_size,)"
    assert q.dtype in [
        torch.float16,
        torch.bfloat16,
    ], "inputs must be float16 or bfloat16"
    assert q.dtype == k.dtype == v.dtype, "inputs must have the same dtype"
    for t in [cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k]:
        if t is not None:
            assert (
                t.dtype == torch.int32
            ), "cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k must be int32"
            assert (
                t.stride(0) == 1
            ), "cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k must be contiguous"
    if learnable_sink is not None:
        assert learnable_sink.shape == (num_head,)
        assert learnable_sink.dtype == torch.bfloat16, "learnable_sink must be bfloat16"
    assert all(
        t is None or t.is_cuda
        for t in (
            q,
            k,
            v,
            cu_seqlens_q,
            cu_seqlens_k,
            seqused_q,
            seqused_k,
            page_table,
            learnable_sink,
        )
    ), "inputs must be on CUDA device"
    assert num_head % num_head_kv == 0, "num_head must be divisible by num_head_kv"
    assert head_dim <= 256, "head_dim must be less than or equal to 256"
    alignment = 16 // q.element_size()
    assert head_dim % alignment == 0, f"head_dim must be divisible by {alignment}"
    assert head_dim_v % alignment == 0, f"head_dim_v must be divisible by {alignment}"
    if softmax_scale is None:
        softmax_scale = 1.0 / math.sqrt(head_dim)
    if softcap == 0.0:
        softcap = None
    qhead_per_kvhead = num_head // num_head_kv
    if pack_gqa is None:
        pack_gqa = qhead_per_kvhead > 1

    out_torch_dtype = q.dtype
    device = q.device
    q_batch_seqlen_shape = (
        (batch_size, seqlen_q) if cu_seqlens_q is None else (total_q,)
    )
    out = torch.empty(
        *q_batch_seqlen_shape,
        num_head,
        head_dim_v,
        dtype=out_torch_dtype,
        device=device,
    )
    lse_shape = (
        (batch_size, num_head, seqlen_q)
        if cu_seqlens_q is None
        else (num_head, total_q)
    )
    lse = (
        torch.empty(lse_shape, dtype=torch.float32, device=device)
        if return_softmax_lse
        else None
    )

    dtype = torch2cute_dtype_map[q.dtype]
    q_tensor, k_tensor, v_tensor, o_tensor = [
        from_dlpack(t.detach(), assumed_align=16).mark_layout_dynamic(
            leading_dim=t.ndim - 1
        )
        for t in (q, k, v, out)
    ]
    lse_tensor = (
        from_dlpack(lse.detach(), assumed_align=4).mark_layout_dynamic(
            leading_dim=lse.ndim - 1
        )
        if lse is not None
        else None
    )
    (
        cu_seqlens_q_tensor,
        cu_seqlens_k_tensor,
        seqused_q_tensor,
        seqused_k_tensor,
        learnable_sink_tensor,
    ) = [
        (
            from_dlpack(t.detach(), assumed_align=4).mark_layout_dynamic(leading_dim=0)
            if t is not None
            else None
        )
        for t in (cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, learnable_sink)
    ]
    page_table_tensor = (
        from_dlpack(page_table.detach(), assumed_align=4).mark_layout_dynamic(
            leading_dim=1
        )
        if page_table is not None
        else None
    )
    if causal:
        window_size_right = 0
    local = window_size_left is not None or window_size_right is not None
    if window_size_left is not None or window_size_right is not None:
        if window_size_left is None and window_size_right == 0:
            causal, local = True, False
        else:
            causal, local = False, True
    compute_capability = (
        torch.cuda.get_device_capability()[0]
        if _compute_capability is None
        else _compute_capability
    )
    assert compute_capability in [
        9,
        10,
    ], "Unsupported compute capability. Supported: 9.x, 10.x"
    current_stream = cuda.CUstream(torch.cuda.current_stream().cuda_stream)

    if compute_capability == 9:  # TODO: tune block size according to hdim
        if head_dim == head_dim_v == 128 and not causal and not local:
            n_block_size = 192
    if compute_capability == 10:
        # TODO: fix the varlen case
        if (
            pack_gqa
            and (128 % qhead_per_kvhead != 0)
            or (cu_seqlens_q is not None or seqused_q is not None)
        ):
            pack_gqa = False

    compile_key = (
        dtype,
        head_dim,
        head_dim_v,
        qhead_per_kvhead,
        causal,
        softcap is not None,
        lse is None,
        cu_seqlens_q is None,
        cu_seqlens_k is None,
        seqused_q is None,
        seqused_k is None,
        page_table is not None,
        window_size_left is not None,
        window_size_right is not None,
        learnable_sink is not None,
        m_block_size,
        n_block_size,
        num_threads,
        pack_gqa,
        compute_capability,
    )
    if compile_key not in _flash_attn_fwd.compile_cache:
279
280
281
        logger.info(
            f"Compiling FA4 kernel with reason: {_reason_recompile(compile_key, _flash_attn_fwd)}"
        )
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        if compute_capability == 9:
            assert page_table is None, "paged KV not supported on SM 9.0"
            # fa_fwd = FlashAttentionForwardSm80(
            fa_fwd = FlashAttentionForwardSm90(
                dtype,
                head_dim,
                head_dim_v,
                qhead_per_kvhead,
                is_causal=causal,
                is_local=local,
                pack_gqa=pack_gqa,
                m_block_size=m_block_size,
                n_block_size=n_block_size,
                # num_stages=1,
                num_stages=2,
                num_threads=num_threads,
                Q_in_regs=False,
            )
        elif compute_capability == 10:
            assert page_size in [
                None,
                128,
            ], "Only page_size=128 is supported for paged KV on SM 10.0"
            fa_fwd = FlashAttentionForwardSm100(
                head_dim,
                head_dim_v,
                qhead_per_kvhead=qhead_per_kvhead,
                is_causal=causal,
                is_local=local,
                pack_gqa=pack_gqa,
                is_persistent=not causal
                and not local
                and cu_seqlens_q is None
                and seqused_q is None,
            )
        else:
            raise ValueError(
                f"Unsupported compute capability: {compute_capability}. Supported: 9.x, 10.x"
            )
        # TODO: check @can_implement
        _flash_attn_fwd.compile_cache[compile_key] = cute.compile(
            fa_fwd,
            q_tensor,
            k_tensor,
            v_tensor,
            o_tensor,
            lse_tensor,
            softmax_scale,
            current_stream,
            cu_seqlens_q_tensor,
            cu_seqlens_k_tensor,
            seqused_q_tensor,
            seqused_k_tensor,
            page_table_tensor,
            softcap,
            window_size_left,
            window_size_right,
            learnable_sink_tensor,
        )
    _flash_attn_fwd.compile_cache[compile_key](
        q_tensor,
        k_tensor,
        v_tensor,
        o_tensor,
        lse_tensor,
        softmax_scale,
        current_stream,
        cu_seqlens_q_tensor,
        cu_seqlens_k_tensor,
        seqused_q_tensor,
        seqused_k_tensor,
        page_table_tensor,
        softcap,
        window_size_left,
        window_size_right,
        learnable_sink_tensor,
    )
    return out, lse


_flash_attn_fwd.compile_cache = {}
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
_flash_attn_fwd.compile_key_map = [
    "dtype",
    "head_dim",
    "head_dim_v",
    "qhead_per_kvhead",
    "causal",
    "softcap is not None",
    "lse is None",
    "cu_seqlens_q is None",
    "cu_seqlens_k is None",
    "seqused_q is None",
    "seqused_k is None",
    "page_table is not None",
    "window_size_left is not None",
    "window_size_right is not None",
    "learnable_sink is not None",
    "m_block_size",
    "n_block_size",
    "num_threads",
    "pack_gqa",
    "compute_capability",
]


def warmup_flash_attn(f):
    """
    Decorator for flash_attn_varlen_func:
    - On the first call, run several warmup passes with different flag combinations
    - Warmups are executed sequentially to minimize peak GPU memory usage
    - Does not modify user-provided tensors (clones data)
    - Easy to extend with more compile-key dimensions
    """
    done = False

    def _clone_args(args, kwargs):
        """Clone tensor arguments to avoid sharing storage; deepcopy for others."""

        def maybe_clone(x):
            if isinstance(x, torch.Tensor):
                return x.clone()
            return copy.deepcopy(x)

        return tuple(maybe_clone(a) for a in args), {
            k: maybe_clone(v) for k, v in kwargs.items()
        }

    def _run_warmups(args, kwargs):
        """Run warmup calls sequentially and release memory after each."""
        base_args, base_kwargs = _clone_args(args, kwargs)

        # Warmup combinations for return_softmax_lse and causal
        combos = [
            dict(return_softmax_lse=False, causal=False),
            dict(return_softmax_lse=False, causal=True),
            dict(return_softmax_lse=True, causal=False),
            dict(return_softmax_lse=True, causal=True),
        ]

        for combo in combos:
            wa, wk = _clone_args(base_args, base_kwargs)
            wk.update(combo)
            with torch.cuda.stream(torch.cuda.current_stream()):
                f(*wa, **wk)
            del wa, wk
            torch.cuda.empty_cache()
            gc.collect()

    def wrapper(*args, **kwargs):
        nonlocal done
        if not done:
            logger.info("Running flash_attn_varlen_func warmup passes...")
            _run_warmups(args, kwargs)
            done = True
        return f(*args, **kwargs)

    return wrapper
439
440


441
@warmup_flash_attn
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
def flash_attn_varlen_func(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    cu_seqlens_q: Optional[torch.Tensor] = None,
    cu_seqlens_k: Optional[torch.Tensor] = None,
    seqused_q: Optional[torch.Tensor] = None,
    seqused_k: Optional[torch.Tensor] = None,
    page_table: Optional[torch.Tensor] = None,
    softmax_scale: Optional[float] = None,
    causal: bool = False,
    window_size: Tuple[Optional[int], Optional[int]] = (None, None),
    learnable_sink: Optional[torch.Tensor] = None,
    softcap: float = 0.0,
    pack_gqa: Optional[bool] = None,
    return_softmax_lse: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
    out, lse = _flash_attn_fwd(
        q,
        k,
        v,
        cu_seqlens_q,
        cu_seqlens_k,
        seqused_q,
        seqused_k,
        page_table=page_table,
        softmax_scale=softmax_scale,
        causal=causal,
        window_size_left=window_size[0],
        window_size_right=window_size[1],
        learnable_sink=learnable_sink,
        softcap=softcap,
        pack_gqa=pack_gqa,
        return_softmax_lse=return_softmax_lse,
    )

    return (out, lse) if return_softmax_lse else out