test_eval_fp8_accuracy.py 4.76 KB
Newer Older
HandH1998's avatar
HandH1998 committed
1
2
3
import unittest
from types import SimpleNamespace

4
5
import torch

HandH1998's avatar
HandH1998 committed
6
7
8
9
10
from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST,
    DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
11
12
    DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST,
    DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION,
13
    DEFAULT_MODEL_NAME_FOR_TEST,
HandH1998's avatar
HandH1998 committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
)


class TestEvalFP8Accuracy(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            cls.model, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_mmlu(self):
        args = SimpleNamespace(
            base_url=self.base_url,
            model=self.model,
            eval_name="mmlu",
            num_examples=64,
            num_threads=32,
            temperature=0.1,
        )

        metrics = run_eval(args)
Lianmin Zheng's avatar
Lianmin Zheng committed
44
        self.assertGreaterEqual(metrics["score"], 0.61)
HandH1998's avatar
HandH1998 committed
45
46
47


class TestEvalFP8DynamicQuantAccuracy(unittest.TestCase):
48
49
50
51
52
53
54
55

    def _run_test(self, model, other_args, expected_score):
        base_url = DEFAULT_URL_FOR_TEST
        other_args = other_args or []

        process = popen_launch_server(
            model,
            base_url,
HandH1998's avatar
HandH1998 committed
56
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
57
            other_args=other_args,
HandH1998's avatar
HandH1998 committed
58
59
        )

60
61
62
63
64
65
66
67
68
        try:
            args = SimpleNamespace(
                base_url=base_url,
                model=model,
                eval_name="mmlu",
                num_examples=64,
                num_threads=32,
                temperature=0.1,
            )
HandH1998's avatar
HandH1998 committed
69

70
71
72
73
74
75
76
77
78
79
80
            metrics = run_eval(args)
            self.assertGreaterEqual(metrics["score"], expected_score)
        finally:
            kill_process_tree(process.pid)

    def test_mmlu_offline_only(self):
        """Test with offline quantization only."""
        self._run_test(
            model=DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
            other_args=[],
            expected_score=0.64,
HandH1998's avatar
HandH1998 committed
81
82
        )

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def test_mmlu_offline_and_online_override(self):
        """Test with both offline and online quantization."""
        self._run_test(
            model=DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
            other_args=["--quantization", "w8a8_fp8"],
            # inference will use sgl kernel w/ online quant override
            # we observed that the accuracy is higher then offline only
            expected_score=0.64,
        )

    def test_mmlu_online_only(self):
        """Test with online quantization only."""
        self._run_test(
            model=DEFAULT_MODEL_NAME_FOR_TEST,
            # inference will use sgl kernel w/ online quantization only
            # we observed that the accuracy is higher then offline only
            other_args=["--quantization", "w8a8_fp8"],
            expected_score=0.64,
        )

    def test_mmlu_fp16_baseline(self):
        """Test with unquantized fp16 baseline."""
        self._run_test(
            model=DEFAULT_MODEL_NAME_FOR_TEST,
            other_args=[],
            expected_score=0.64,
        )
HandH1998's avatar
HandH1998 committed
110
111


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
class TestEvalFP8ModelOptQuantAccuracy(unittest.TestCase):

    def _run_test(self, model, other_args, expected_score):
        base_url = DEFAULT_URL_FOR_TEST
        other_args = other_args or []

        process = popen_launch_server(
            model,
            base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=other_args,
        )

        try:
            args = SimpleNamespace(
                base_url=base_url,
                model=model,
                eval_name="mmlu",
                num_examples=64,
                num_threads=32,
                temperature=0.1,
            )

            metrics = run_eval(args)
            self.assertGreaterEqual(metrics["score"], expected_score)
        finally:
            kill_process_tree(process.pid)

140
141
142
    @unittest.skipIf(
        torch.version.hip is not None, "modelopt quantization unsupported on ROCm"
    )
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    def test_mmlu_offline_only(self):
        """Test with offline quantization only."""
        self._run_test(
            model=DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST,
            other_args=[
                "--quantization",
                "modelopt",
                "--revision",
                DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION,
            ],
            expected_score=0.64,
        )


HandH1998's avatar
HandH1998 committed
157
158
if __name__ == "__main__":
    unittest.main()