test_score_api.py 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import unittest

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

from sglang.srt.entrypoints.engine import Engine
from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST, CustomTestCase

TEST_MODEL_NAME = DEFAULT_SMALL_MODEL_NAME_FOR_TEST


class TestScoreAPI(CustomTestCase):
    """Test the scoring API functionality."""

    def setUp(self):
        """Set up each test case."""
        self.engine = Engine(model_path=TEST_MODEL_NAME)

    def tearDown(self):
        """Clean up after each test case."""
        if self.engine is not None:
            self.engine.shutdown()
            torch.cuda.empty_cache()

    def compute_hf_scores(
        self, query, items, label_token_ids, apply_softmax=False, item_first=False
    ):
        """Compute scores using direct HuggingFace model inference.
        Returns probabilities for each token ID, optionally normalized with softmax.

        Args:
            query: The query text
            items: List of item texts
            label_token_ids: List of token IDs to compute probabilities for
            apply_softmax: Whether to normalize probabilities using softmax
            item_first: If True, prepend items to query. Otherwise append items to query.
        """
        # Initialize HF model and tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            TEST_MODEL_NAME, trust_remote_code=True
        )
        model = AutoModelForCausalLM.from_pretrained(
            TEST_MODEL_NAME, trust_remote_code=True
        )

        try:
            scores = []
            for item in items:
                # Construct full text based on item_first parameter
                full_text = f"{item}{query}" if item_first else f"{query}{item}"
                inputs = tokenizer(full_text, return_tensors="pt").to(model.device)

                # Get logits for the last token
                with torch.no_grad():
                    outputs = model(**inputs)
                    last_token_logits = outputs.logits[0, -1]

                # Get logits for just our target tokens
                target_logits = last_token_logits[label_token_ids]

                # Apply softmax over just the target tokens
                target_probs = torch.softmax(target_logits, dim=-1)

                # Convert to list of probabilities in order of label_token_ids
                probs = [target_probs[i].item() for i in range(len(label_token_ids))]

                scores.append(probs)

            return scores
        finally:
            # Clean up HF resources
            model.cpu()
            del model
            del tokenizer
            torch.cuda.empty_cache()

    def _get_token_ids(self, tokens):
        """Helper method to get token IDs for a list of tokens."""
        tokenizer = AutoTokenizer.from_pretrained(
            TEST_MODEL_NAME, trust_remote_code=True
        )
        try:
            label_token_ids = []
            for token in tokens:
                encoding = tokenizer.encode_plus(token, add_special_tokens=False)
                token_ids = encoding["input_ids"]
                label_token_ids.append(token_ids[0])
            return label_token_ids
        finally:
            del tokenizer

    def _compare_scores(self, hf_scores, sglang_scores, label_token_ids, case_name=""):
        """Helper method to compare scores between HF and SGLang using relative tolerance."""
        self.assertEqual(
            len(hf_scores),
            len(sglang_scores),
            f"Score lengths don't match for {case_name}",
        )

        # Use a relative tolerance of 1%
        TOLERANCE = 0.01

        for hf_score_list, sglang_score_list in zip(hf_scores, sglang_scores):
            self.assertEqual(
                len(hf_score_list),
                len(sglang_score_list),
                f"Score list lengths don't match for {case_name}",
            )

            for hf_score, sglang_score in zip(hf_score_list, sglang_score_list):
                diff = abs(hf_score - sglang_score)
                self.assertLessEqual(
                    diff,
                    TOLERANCE,
                    msg=f"Scores differ by {diff:.2%} ({case_name}): "
                    f"HF={hf_score:.6f}, SGLang={sglang_score:.6f}",
                )

                self.assertGreaterEqual(
                    sglang_score, 0, f"SGLang score {sglang_score:.6f} not in [0,1]"
                )
                self.assertLessEqual(
                    sglang_score, 1, f"SGLang score {sglang_score:.6f} not in [0,1]"
                )

            self.assertAlmostEqual(
                sum(sglang_score_list),
                1.0,
                places=6,
                msg=f"SGLang scores don't sum to 1 ({case_name}): {sum(sglang_score_list):.6f}",
            )

    def test_score_consistency(self):
        """Test that SGLang scoring matches direct HuggingFace model scoring."""
        # Define test cases
        test_cases = [
            {
                "name": "default case",
                "query": "I pledge allegiance",
                "items": ["", " to"],
                "item_first": False,
            },
            {
                "name": "item_first case",
                "query": " is a city",
                "items": ["Tokyo", "Japan"],
                "item_first": True,
            },
        ]

        # Common tokens to test for all cases
        tokens = [" to", " the"]
        label_token_ids = self._get_token_ids(tokens)

        # Run each test case
        for case in test_cases:
            # Get scores from SGLang
            sglang_scores = self.engine.score(
                query=case["query"],
                items=case["items"],
                label_token_ids=label_token_ids,
                apply_softmax=True,
                item_first=case["item_first"],
            )

            # Get scores from HuggingFace using the same parameters
            hf_scores = self.compute_hf_scores(
                query=case["query"],
                items=case["items"],
                label_token_ids=label_token_ids,
                apply_softmax=True,
                item_first=case["item_first"],
            )

            # Compare scores
            self._compare_scores(
                hf_scores, sglang_scores, label_token_ids, case["name"]
            )

    def test_score_batch_handling(self):
        """Test that batch scoring works correctly."""
        # Test with different batch sizes
        batch_sizes = [1, 2, 4, 8]
        label_token_ids = [1, 2, 3]

        for batch_size in batch_sizes:
            texts = [f"test {i}" for i in range(batch_size)]
            scores = self.engine.score(
                query="The test was",
                items=texts,
                label_token_ids=label_token_ids,
                apply_softmax=True,
            )

            self.assertEqual(
                len(scores),
                batch_size,
                f"Expected {batch_size} scores, got {len(scores)}",
            )

            # Verify each score list has the correct length
            for score_list in scores:
                self.assertEqual(
                    len(score_list),
                    len(label_token_ids),
                    f"Score list length {len(score_list)} doesn't match label_token_ids length {len(label_token_ids)}",
                )
                self.assertTrue(
                    all(isinstance(v, float) for v in score_list),
                    "All scores should be floats",
                )
                self.assertAlmostEqual(
                    1.0, sum(score_list), 6, "Scores should sum to 1"
                )

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    def test_score_request_construction(self):
        """Test that scoring requests are constructed to avoid decode phase."""
        from unittest.mock import patch

        # Capture the internal request to verify optimization
        captured_requests = []
        original_gen = self.engine.tokenizer_manager.generate_request

        async def mock_generate_request(req, request=None):
            captured_requests.append(req)
            async for result in original_gen(req, request):
                yield result

        # Patch the generate_request method
        with patch.object(
            self.engine.tokenizer_manager,
            "generate_request",
            side_effect=mock_generate_request,
        ):
            # Run a scoring request
            query = "What is the capital of"
            items = ["France", "Germany"]
            label_token_ids = [1, 2, 3]

            scores = self.engine.score(
                query=query,
                items=items,
                label_token_ids=label_token_ids,
                apply_softmax=True,
            )

            # Verify we got results
            self.assertEqual(len(scores), len(items))

            # Verify the captured request has decode-avoiding properties
            self.assertEqual(len(captured_requests), 1)
            request = captured_requests[0]

            # Key assertions for decode phase avoidance:
            # 1. max_new_tokens should be 0 (prevents token generation)
            # Handle both single and batch request cases
            if isinstance(request.sampling_params, dict):
                max_new_tokens = request.sampling_params.get("max_new_tokens", 0)
            elif isinstance(request.sampling_params, list):
                # For batch requests, check the first item
                max_new_tokens = request.sampling_params[0].get("max_new_tokens", 0)
            else:
                max_new_tokens = getattr(request.sampling_params, "max_new_tokens", 0)

            self.assertEqual(
                max_new_tokens, 0, "max_new_tokens should be 0 to avoid decode phase"
            )

            # 2. Should have token_ids_logprob for scoring
            # Handle both single and batch request cases
            if (
                isinstance(request.token_ids_logprob, list)
                and len(request.token_ids_logprob) > 0
                and isinstance(request.token_ids_logprob[0], list)
            ):
                # Batch case: token_ids_logprob is a list of lists
                # Each item in the batch should have the same label_token_ids
                for item_token_ids in request.token_ids_logprob:
                    self.assertEqual(
                        item_token_ids,
                        label_token_ids,
                        "Each batch item should have label_token_ids for scoring",
                    )
            else:
                # Single request case
                self.assertEqual(
                    request.token_ids_logprob,
                    label_token_ids,
                    "Should have label_token_ids for scoring",
                )

            # 3. Should request logprobs but not stream
            self.assertTrue(
                request.return_logprob, "Should request logprobs for scoring"
            )
            self.assertFalse(request.stream, "Scoring requests should not stream")

298
299
300

if __name__ == "__main__":
    unittest.main()