bench_serving.md 11.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
## Bench Serving Guide

This guide explains how to benchmark online serving throughput and latency using `python -m sglang.bench_serving`. It supports multiple inference backends via OpenAI-compatible and native endpoints, and produces both console metrics and optional JSONL outputs.

### What it does

- Generates synthetic or dataset-driven prompts and submits them to a target serving endpoint
- Measures throughput, time-to-first-token (TTFT), inter-token latency (ITL), per-request end-to-end latency, and more
- Supports streaming or non-streaming modes, rate control, and concurrency limits

### Supported backends and endpoints

- `sglang` / `sglang-native`: `POST /generate`
- `sglang-oai`, `vllm`, `lmdeploy`: `POST /v1/completions`
- `sglang-oai-chat`, `vllm-chat`, `lmdeploy-chat`: `POST /v1/chat/completions`
- `trt` (TensorRT-LLM): `POST /v2/models/ensemble/generate_stream`
- `gserver`: Custom server (Not Implemented yet in this script)
- `truss`: `POST /v1/models/model:predict`

If `--base-url` is provided, requests are sent to it. Otherwise, `--host` and `--port` are used. When `--model` is not provided, the script will attempt to query `GET /v1/models` for an available model ID (OpenAI-compatible endpoints).

### Prerequisites

- Python 3.8+
- Dependencies typically used by this script: `aiohttp`, `numpy`, `requests`, `tqdm`, `transformers`, and for some datasets `datasets`, `pillow`, `pybase64`. Install as needed.
- An inference server running and reachable via the endpoints above
- If your server requires authentication, set environment variable `OPENAI_API_KEY` (used as `Authorization: Bearer <key>`)

### Quick start

Run a basic benchmark against an sglang server exposing `/generate`:

```bash
python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct
```

```bash
python3 -m sglang.bench_serving \
  --backend sglang \
  --host 127.0.0.1 --port 30000 \
  --num-prompts 1000 \
  --model meta-llama/Llama-3.1-8B-Instruct
```

Or, using an OpenAI-compatible endpoint (completions):

```bash
python3 -m sglang.bench_serving \
  --backend vllm \
  --base-url http://127.0.0.1:8000 \
  --num-prompts 1000 \
  --model meta-llama/Llama-3.1-8B-Instruct
```

### Datasets

Select with `--dataset-name`:

- `sharegpt` (default): loads ShareGPT-style pairs; optionally restrict with `--sharegpt-context-len` and override outputs with `--sharegpt-output-len`
- `random`: random text lengths; sampled from ShareGPT token space
- `random-ids`: random token ids (can lead to gibberish)
- `random-image`: generates random images and wraps them in chat messages; supports custom resolutions via 'heightxwidth' format
- `generated-shared-prefix`: synthetic dataset with shared long system prompts and short questions
- `mmmu`: samples from MMMU (Math split) and includes images

Common dataset flags:

- `--num-prompts N`: number of requests
- `--random-input-len`, `--random-output-len`, `--random-range-ratio`: for random/random-ids/random-image
- `--random-image-num-images`, `--random-image-resolution`: for random-image dataset (supports presets 1080p/720p/360p or custom 'heightxwidth' format)
- `--apply-chat-template`: apply tokenizer chat template when constructing prompts
- `--dataset-path PATH`: file path for ShareGPT json; if blank and missing, it will be downloaded and cached

Generated Shared Prefix flags (for `generated-shared-prefix`):

- `--gsp-num-groups`
- `--gsp-prompts-per-group`
- `--gsp-system-prompt-len`
- `--gsp-question-len`
- `--gsp-output-len`

Random Image dataset flags (for `random-image`):

- `--random-image-num-images`: Number of images per request
- `--random-image-resolution`: Image resolution; supports presets (1080p, 720p, 360p) or custom 'heightxwidth' format (e.g., 1080x1920, 512x768)

### Examples

1. To benchmark random-image dataset with 3 images per request, 500 prompts, 512 input length, and 512 output length, you can run:

```bash
python -m sglang.launch_server --model-path Qwen/Qwen2.5-VL-3B-Instruct --disable-radix-cache
```

```bash
python -m sglang.bench_serving \
    --backend sglang-oai-chat \
    --dataset-name random-image \
    --num-prompts 500 \
    --random-image-num-images 3 \
    --random-image-resolution 720p \
    --random-input-len 512 \
    --random-output-len 512
```

2. To benchmark random dataset with 3000 prompts, 1024 input length, and 1024 output length, you can run:

```bash
python -m sglang.launch_server --model-path Qwen/Qwen2.5-3B-Instruct
```

```bash
python3 -m sglang.bench_serving \
    --backend sglang \
    --dataset-name random \
    --num-prompts 3000 \
    --random-input 1024 \
    --random-output 1024 \
    --random-range-ratio 0.5
```

### Choosing model and tokenizer

- `--model` is required unless the backend exposes `GET /v1/models`, in which case the first model ID is auto-selected.
- `--tokenizer` defaults to `--model`. Both can be HF model IDs or local paths.
- For ModelScope workflows, setting `SGLANG_USE_MODELSCOPE=true` enables fetching via ModelScope (weights are skipped for speed).
- If your tokenizer lacks a chat template, the script warns because token counting can be less robust for gibberish outputs.

### Rate, concurrency, and streaming

- `--request-rate`: requests per second. `inf` sends all immediately (burst). Non-infinite rate uses a Poisson process for arrival times.
- `--max-concurrency`: caps concurrent in-flight requests regardless of arrival rate.
- `--disable-stream`: switch to non-streaming mode when supported; TTFT then equals total latency for chat completions.

### Other key options

- `--output-file FILE.jsonl`: append JSONL results to file; auto-named if unspecified
- `--output-details`: include per-request arrays (generated texts, errors, ttfts, itls, input/output lens)
- `--extra-request-body '{"top_p":0.9,"temperature":0.6}'`: merged into payload (sampling params, etc.)
- `--disable-ignore-eos`: pass through EOS behavior (varies by backend)
- `--warmup-requests N`: run warmup requests with short output first (default 1)
- `--flush-cache`: call `/flush_cache` (sglang) before main run
- `--profile`: call `/start_profile` and `/stop_profile` (requires server to enable profiling, e.g., `SGLANG_TORCH_PROFILER_DIR`)
- `--lora-name name1 name2 ...`: randomly pick one per request and pass to backend (e.g., `lora_path` for sglang)
- `--tokenize-prompt`: send integer IDs instead of text (currently supports `--backend sglang` only)

### Authentication

If your target endpoint requires OpenAI-style auth, set:

```bash
export OPENAI_API_KEY=sk-...yourkey...
```

The script will add `Authorization: Bearer $OPENAI_API_KEY` automatically for OpenAI-compatible routes.

### Metrics explained

Printed after each run:

- Request throughput (req/s)
- Input token throughput (tok/s)
- Output token throughput (tok/s)
- Total token throughput (tok/s)
- Concurrency: aggregate time of all requests divided by wall time
- End-to-End Latency (ms): mean/median/std/p99 per-request total latency
- Time to First Token (TTFT, ms): mean/median/std/p99 for streaming mode
- Inter-Token Latency (ITL, ms): mean/median/std/p95/p99/max between tokens
- TPOT (ms): Token processing time after first token, i.e., `(latency - ttft)/(tokens-1)`
- Accept length (sglang-only, if available): speculative decoding accept length

The script also retokenizes generated text with the configured tokenizer and reports "retokenized" counts.

### JSONL output format

When `--output-file` is set, one JSON object is appended per run. Base fields:

- Arguments summary: backend, dataset, request_rate, max_concurrency, etc.
- Duration and totals: completed, total_input_tokens, total_output_tokens, retokenized totals
- Throughputs and latency statistics as printed in the console
- `accept_length` when available (sglang)

With `--output-details`, an extended object also includes arrays:

- `input_lens`, `output_lens`
- `ttfts`, `itls` (per request: ITL arrays)
- `generated_texts`, `errors`

### End-to-end examples

1) sglang native `/generate` (streaming):

```bash
python3 -m sglang.bench_serving \
  --backend sglang \
  --host 127.0.0.1 --port 30000 \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --dataset-name random \
  --random-input-len 1024 --random-output-len 1024 --random-range-ratio 0.5 \
  --num-prompts 2000 \
  --request-rate 100 \
  --max-concurrency 512 \
  --output-file sglang_random.jsonl --output-details
```

2) OpenAI-compatible Completions (e.g., vLLM):

```bash
python3 -m sglang.bench_serving \
  --backend vllm \
  --base-url http://127.0.0.1:8000 \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --dataset-name sharegpt \
  --num-prompts 1000 \
  --sharegpt-output-len 256
```

3) OpenAI-compatible Chat Completions (streaming):

```bash
python3 -m sglang.bench_serving \
  --backend vllm-chat \
  --base-url http://127.0.0.1:8000 \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --dataset-name random \
  --num-prompts 500 \
  --apply-chat-template
```

4) Random images (VLM) with chat template:

```bash
python3 -m sglang.bench_serving \
  --backend sglang \
  --host 127.0.0.1 --port 30000 \
  --model your-vlm-model \
  --dataset-name random-image \
  --random-image-num-images 2 \
  --random-image-resolution 720p \
  --random-input-len 128 --random-output-len 256 \
  --num-prompts 200 \
  --apply-chat-template
```

4a) Random images with custom resolution:

```bash
python3 -m sglang.bench_serving \
  --backend sglang \
  --host 127.0.0.1 --port 30000 \
  --model your-vlm-model \
  --dataset-name random-image \
  --random-image-num-images 1 \
  --random-image-resolution 512x768 \
  --random-input-len 64 --random-output-len 128 \
  --num-prompts 100 \
  --apply-chat-template
```

5) Generated shared prefix (long system prompts + short questions):

```bash
python3 -m sglang.bench_serving \
  --backend sglang \
  --host 127.0.0.1 --port 30000 \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --dataset-name generated-shared-prefix \
  --gsp-num-groups 64 --gsp-prompts-per-group 16 \
  --gsp-system-prompt-len 2048 --gsp-question-len 128 --gsp-output-len 256 \
  --num-prompts 1024
```

6) Tokenized prompts (ids) for strict length control (sglang only):

```bash
python3 -m sglang.bench_serving \
  --backend sglang \
  --host 127.0.0.1 --port 30000 \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --dataset-name random \
  --tokenize-prompt \
  --random-input-len 2048 --random-output-len 256 --random-range-ratio 0.2
```

7) Profiling and cache flush (sglang):

```bash
python3 -m sglang.bench_serving \
  --backend sglang \
  --host 127.0.0.1 --port 30000 \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --profile \
  --flush-cache
```

8) TensorRT-LLM streaming endpoint:

```bash
python3 -m sglang.bench_serving \
  --backend trt \
  --base-url http://127.0.0.1:8000 \
  --model your-trt-llm-model \
  --dataset-name random \
  --num-prompts 100 \
  --disable-ignore-eos
```

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
9) Evaluating large-scale KVCache sharing with mooncake trace (sglang only):

```bash
python3 -m sglang.bench_serving \
  --backend sglang \
  --host 127.0.0.1 --port 30000 \
  --model mode-name \
  --dataset-name mooncake \
  --mooncake-slowdown-factor 1.0 \
  --mooncake-num-rounds 1000 \
  --mooncake-workload conversation|mooncake|agent|synthetic
  --use-trace-timestamps true \
  --random-output-len 256
```

323
324
325
326
327
328
329
330
331
332
333
334
### Troubleshooting

- All requests failed: verify `--backend`, server URL/port, `--model`, and authentication. Check warmup errors printed by the script.
- Throughput seems too low: adjust `--request-rate` and `--max-concurrency`; verify server batch size/scheduling; ensure streaming is enabled if appropriate.
- Token counts look odd: prefer chat/instruct models with proper chat templates; otherwise tokenization of gibberish may be inconsistent.
- Random-image/MMMU datasets: ensure you installed extra deps (`pillow`, `datasets`, `pybase64`).
- Authentication errors (401/403): set `OPENAI_API_KEY` or disable auth on your server.

### Notes

- The script raises the file descriptor soft limit (`RLIMIT_NOFILE`) to help with many concurrent connections.
- For sglang, `/get_server_info` is queried post-run to report speculative decoding accept length when available.