test_fp8_gemm.py 1.93 KB
Newer Older
1
import pytest
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import torch
from sgl_kernel import fp8_scaled_mm


def torch_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias):
    o = torch.matmul(a.to(torch.float32), b.to(torch.float32))
    o = o.to(torch.float32)
    temp1 = o * scale_a.view(-1, 1)
    temp2 = temp1 * scale_b.view(1, -1)
    final = temp2.to(out_dtype)
    if bias is not None:
        final = final + bias.view(1, -1)
    return final


17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def _test_accuracy_once(M, N, K, with_bias, out_dtype, device):
    fp8_info = torch.finfo(torch.float8_e4m3fn)
    fp8_max, fp8_min = fp8_info.max, fp8_info.min
    a_fp32 = (torch.rand(M, K, dtype=torch.float32, device=device) - 0.5) * 2 * fp8_max
    a_fp8 = a_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
    b_fp32 = (torch.rand(N, K, dtype=torch.float32, device=device) - 0.5) * 2 * fp8_max
    b_fp8 = b_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
    scale_a = torch.randn((M,), device=device, dtype=torch.float32) * 0.001
    scale_b = torch.randn((N,), device=device, dtype=torch.float32) * 0.001
    if with_bias:
        bias = torch.randn((N,), device=device, dtype=out_dtype)
    else:
        bias = None
    b_fp8 = b_fp8.t()
    o = torch_scaled_mm(a_fp8, b_fp8, scale_a, scale_b, out_dtype, bias)
    o1 = fp8_scaled_mm(a_fp8, b_fp8, scale_a, scale_b, out_dtype, bias)
    rtol = 0.02
    atol = 1
    torch.testing.assert_close(o, o1, rtol=rtol, atol=atol)
    print(f"M={M}, N={N}, K={K}, with_bias={with_bias}, out_dtype={out_dtype}: OK")


@pytest.mark.parametrize("M", [1, 128, 512, 1024, 4096])
@pytest.mark.parametrize("N", [16, 128, 512, 1024, 4096])
@pytest.mark.parametrize("K", [512, 1024, 4096, 8192, 16384])
@pytest.mark.parametrize("with_bias", [True, False])
@pytest.mark.parametrize("out_dtype", [torch.bfloat16, torch.float16])
def test_accuracy(M, N, K, with_bias, out_dtype):
    _test_accuracy_once(M, N, K, with_bias, out_dtype, "cuda")
46
47
48


if __name__ == "__main__":
49
    pytest.main([__file__])