test_vision_llm.py 6.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
"""

import unittest
from io import BytesIO

import numpy as np
import requests
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import AutoModel, AutoProcessor, AutoTokenizer

from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.conversation import generate_chat_conv
from sglang.srt.model_executor.model_runner import ModelRunner
from sglang.srt.openai_api.protocol import ChatCompletionRequest
from sglang.srt.server_args import ServerArgs

MiniCPMV = "openbmb/MiniCPM-V-2_6"


# Test the logits output between HF and SGLang
class VisionLLMLogitsBase(unittest.IsolatedAsyncioTestCase):
    @classmethod
    def setUpClass(cls):
        cls.image_url = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
        cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        cls.model_path = ""
        cls.chat_template = ""
        cls.processor = ""
        response = requests.get(cls.image_url)
        cls.main_image = Image.open(BytesIO(response.content))

    def compare_outputs(self, sglang_output: torch.Tensor, hf_output: torch.Tensor):
        # Convert to float32 for numerical stability if needed
        hf = hf_output.float()
        sg = sglang_output.float()

        # Basic shape and dtype comparison
        print("\n=== Basic Properties ===")
        print(f"Shapes match: {hf.shape == sg.shape}")
        print(f"HF shape: {hf.shape}, SGLang shape: {sg.shape}")
        print(f"HF dtype: {hf.dtype}, SGLang dtype: {sg.dtype}")

        # Move tensors to CPU for numpy operations
        hf_np = hf.cpu().numpy()
        sg_np = sg.cpu().numpy()

        # Statistical metrics
        print("\n=== Statistical Metrics ===")
        print(f"Mean absolute difference: {torch.mean(torch.abs(hf - sg)).item():.6f}")
        print(f"Max absolute difference: {torch.max(torch.abs(hf - sg)).item():.6f}")
        print(f"Mean squared error: {torch.mean((hf - sg) ** 2).item():.6f}")
        print(
            f"Root mean squared error: {torch.sqrt(torch.mean((hf - sg) ** 2)).item():.6f}"
        )

        # Cosine similarity (across feature dimension)
        cos_sim = F.cosine_similarity(hf, sg)
        print(f"Mean cosine similarity: {torch.mean(cos_sim).item():.6f}")
        print(f"Min cosine similarity: {torch.min(cos_sim).item():.6f}")

        # Find largest absolute differences
        print("\n=== Largest Absolute Differences ===")
        diffs = torch.abs(hf - sg)
        flat_diffs = diffs.flatten()

        # Get indices of top 10 differences
        top_k = 10
        top_values, top_flat_indices = torch.topk(flat_diffs, top_k)

        # Convert flat indices to multidimensional indices
        top_indices = np.unravel_index(top_flat_indices.cpu().numpy(), diffs.shape)

        print(f"\nTop {top_k} largest absolute differences:")
        print(
            "Index".ljust(30)
            + "Difference".ljust(15)
            + "HF Value".ljust(15)
            + "SGLang Value"
        )
        print("-" * 75)

        for i in range(top_k):
            # Get the index tuple for this difference
            idx = tuple(dim[i] for dim in top_indices)
        diff_val = top_values[i].item()
        hf_val = hf[idx].item()
        sg_val = sg[idx].item()

        # Format the index tuple and values
        idx_str = str(idx)
        print(f"{idx_str:<30}{diff_val:<15.6f}{hf_val:<15.6f}{sg_val:.6f}")

        np.testing.assert_allclose(hf_np, sg_np)

    def get_processor_output(self):
        json_str = f"""
        {{
  "model": "{self.model_path}",
  "messages": [
    {{
      "role": "user",
      "content": [
        {{
          "type": "image_url",
          "image_url": {{
            "url": "{self.image_url}"
          }}
        }},
        {{
          "type": "text",
          "text": "Whats in this picture?"
        }}
      ]
    }}
  ]
}}
        """

        req = ChatCompletionRequest.model_validate_json(json_str)

        conv = generate_chat_conv(req, template_name=self.chat_template)

        text = conv.get_prompt()

        # Process inputs using processor
        # FIXME: the formal arguments may differ
        inputs = self.processor(
            text=[text],
            images=[self.main_image],
            return_tensors="pt",
        ).to(self.device)

        return inputs

    def get_sglang_model(self):
        model_runner = ModelRunner(
            model_config=ModelConfig(self.model_path, model_override_args="{}"),
            mem_fraction_static=0.8,
            gpu_id=0,
            tp_rank=0,
            tp_size=1,
            nccl_port=12435,
            server_args=ServerArgs(
                model_path=self.model_path,
                disable_cuda_graph=True,
            ),
        )
        return model_runner.model


class TestMiniCPMVLogits(VisionLLMLogitsBase):
    @classmethod
    def setUpClass(cls):
        super().setUpClass()
        cls.model_path = MiniCPMV
        cls.tokenizer = AutoTokenizer.from_pretrained(
            cls.model_path, trust_remote_code=True
        )
        cls.processor = AutoProcessor.from_pretrained(
            cls.model_path, trust_remote_code=True
        )
        cls.chat_template = "minicpmv"

        cls.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        cls.model = AutoModel.from_pretrained(
            cls.model_path, torch_dtype=torch.bfloat16, trust_remote_code=True
        ).eval()
        cls.model.to(cls.device)

    async def test_encode_output(self):
        inputs = self.get_processor_output()

        with torch.no_grad():
            model_inputs = {
                "input_ids": inputs.input_ids,
                "image_bound": inputs.image_bound,
                "pixel_values": inputs.pixel_values,
                "tgt_sizes": inputs.tgt_sizes,
            }
            (hf_output, _) = self.model.get_vllm_embedding(
                model_inputs,
            )
            hf_output = hf_output.squeeze(0)

        with torch.no_grad():
            model = self.get_sglang_model()
            input_ids = inputs["input_ids"].to(self.device).flatten()
            image_inputs = model._parse_and_validate_inputs(
                input_ids=input_ids,
                **{
                    "pixel_values": [inputs["pixel_values"]],
                    "tgt_sizes": [inputs["tgt_sizes"]],
                    "im_start_id": [self.tokenizer.im_start_id],
                    "im_end_id": [self.tokenizer.im_end_id],
                    "slice_start_id": [self.tokenizer.slice_start_id],
                    "slice_end_id": [self.tokenizer.slice_end_id],
                },
            )
            (sglang_output, _) = model.get_embedding(
                input_ids=input_ids, image_inputs=image_inputs
            )

        self.compare_outputs(sglang_output, hf_output)


if __name__ == "__main__":
    unittest.main()