speculative_decoding.ipynb 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Speculative Decoding\n",
    "\n",
simveit's avatar
simveit committed
9
    "SGLang now provides an EAGLE-based (EAGLE-2/EAGLE-3) speculative decoding option. Our implementation aims to maximize speed and efficiency and is considered to be among the fastest in open-source LLM engines.\n",
Ke Bao's avatar
Ke Bao committed
10
    "**Note:** Currently, Speculative Decoding in SGLang is compatible with radix cache and chunked prefill.\n",
11
    "\n",
12
13
    "### Performance Highlights\n",
    "\n",
simveit's avatar
simveit committed
14
15
    "Please see below for the huge improvements on throughput for LLaMA-Instruct 3.1 8B tested on MT bench that can be archieved via EAGLE3 decoding.\n",
    "For further details please see the [EAGLE3 paper](https://arxiv.org/pdf/2503.01840).\n",
16
    "\n",
simveit's avatar
simveit committed
17
18
19
20
21
    "| Method | Throughput (tokens/s) |\n",
    "|--------|----------------|\n",
    "| SGLang (w/o speculative, 1x H100) | 158.34 tokens/s |\n",
    "| SGLang + EAGLE-2 (1x H100) | 244.10 tokens/s |\n",
    "| SGLang + EAGLE-3 (1x H100) | 373.25 tokens/s |\n"
22
23
24
25
26
27
28
29
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## EAGLE Decoding\n",
    "\n",
simveit's avatar
simveit committed
30
31
32
33
34
35
    "To enable EAGLE speculative decoding the following parameters are relevant:\n",
    "* `speculative_draft_model_path`: Specifies draft model. This parameter is required.\n",
    "* `speculative_num_steps`: Depth of autoregressive drafting. Increases speculation range but risks rejection cascades. Default is 5.\n",
    "\n",
    "* `speculative_eagle_topk`: Branching factor per step. Improves candidate diversity, will lead to higher acceptance rate, but more lead to higher memory/compute consumption. Default is 4.\n",
    "\n",
simveit's avatar
simveit committed
36
37
38
39
40
41
42
43
44
45
46
47
    "* `speculative_num_draft_tokens`: Maximum parallel verification capacity. Allows deeper tree evaluation but will lead to higher GPU memory usage. Default is 8.\n",
    "\n",
    "These parameters are the same for EAGLE-2 and EAGLE-3."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EAGLE-2 decoding\n",
    "\n",
    "You can enable EAGLE-2 decoding by setting `--speculative_algorithm EAGLE` and choosing an appropriate model."
48
49
50
51
52
53
54
55
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
56
57
58
59
60
61
62
63
    "from sglang.test.test_utils import is_in_ci\n",
    "\n",
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
64
    "\n",
simveit's avatar
simveit committed
65
66
67
68
69
70
71
72
73
    "import openai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
74
    "server_process, port = launch_server_cmd(\n",
75
    "    \"\"\"\n",
76
    "python3 -m sglang.launch_server --model meta-llama/Llama-2-7b-chat-hf  --speculative-algorithm EAGLE \\\n",
77
78
    "    --speculative-draft-model-path lmsys/sglang-EAGLE-llama2-chat-7B --speculative-num-steps 3 \\\n",
    "    --speculative-eagle-topk 4 --speculative-num-draft-tokens 16 --cuda-graph-max-bs 8\n",
79
80
81
    "\"\"\"\n",
    ")\n",
    "\n",
82
    "wait_for_server(f\"http://localhost:{port}\")"
83
84
85
86
87
88
89
90
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
91
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
92
93
    "\n",
    "response = client.chat.completions.create(\n",
simveit's avatar
simveit committed
94
    "    model=\"meta-llama/Llama-2-7b-chat-hf\",\n",
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "\n",
    "print_highlight(f\"Response: {response}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
simveit's avatar
simveit committed
118
    "### EAGLE-2 Decoding with `torch.compile`\n",
119
    "\n",
simveit's avatar
simveit committed
120
    "You can also enable `torch.compile` for further optimizations and optionally set `--torch-compile-max-bs`:\n"
121
122
123
124
125
126
127
128
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
129
    "server_process, port = launch_server_cmd(\n",
130
    "    \"\"\"\n",
131
    "python3 -m sglang.launch_server --model meta-llama/Llama-2-7b-chat-hf  --speculative-algorithm EAGLE \\\n",
132
    "    --speculative-draft-model-path lmsys/sglang-EAGLE-llama2-chat-7B --speculative-num-steps 5 \\\n",
133
    "        --speculative-eagle-topk 8 --speculative-num-draft-tokens 64 --mem-fraction 0.6 \\\n",
simveit's avatar
simveit committed
134
    "            --enable-torch-compile --torch-compile-max-bs 2\n",
135
136
137
    "\"\"\"\n",
    ")\n",
    "\n",
138
    "wait_for_server(f\"http://localhost:{port}\")"
139
140
141
142
143
144
145
146
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
147
148
149
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
simveit's avatar
simveit committed
150
    "    model=\"meta-llama/Llama-2-7b-chat-hf\",\n",
151
152
153
154
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
William's avatar
William committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    "    max_tokens=64,\n",
    ")\n",
    "\n",
    "print_highlight(f\"Response: {response}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
simveit's avatar
simveit committed
174
    "### EAGLE-2 Decoding via Frequency-Ranked Speculative Sampling\n",
William's avatar
William committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    "\n",
    "By employing a truncated high-frequency token vocabulary in the draft model, Eagle speculative decoding reduces `lm_head` computational overhead while accelerating the pipeline without quality degradation. For more details, checkout [the paper](https://arxiv.org/pdf/arXiv:2502.14856).\n",
    "\n",
    "In our implementation, set `--speculative-token-map` to enable the optimization. You can get the high-frequency token in FR-Spec from [this model](https://huggingface.co/thunlp/LLaMA3-Instruct-8B-FR-Spec). Or you can obtain high-frequency token by directly downloading these token from [this repo](https://github.com/thunlp/FR-Spec/tree/main?tab=readme-ov-file#prepare-fr-spec-vocabulary-subset).\n",
    "\n",
    "Thanks for the contribution from [Weilin Zhao](https://github.com/https://github.com/Achazwl) and [Zhousx](https://github.com/Zhou-sx). "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3-8B-Instruct --speculative-algorithm EAGLE \\\n",
    "    --speculative-draft-model-path lmsys/sglang-EAGLE-LLaMA3-Instruct-8B --speculative-num-steps 5 \\\n",
    "    --speculative-eagle-topk 8 --speculative-num-draft-tokens 64 --speculative-token-map thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt \\\n",
    "    --mem-fraction 0.7 --cuda-graph-max-bs 2 --dtype float16 \n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
215
    "    max_tokens=64,\n",
216
217
    ")\n",
    "\n",
218
    "print_highlight(f\"Response: {response}\")"
219
220
   ]
  },
221
222
223
224
225
226
227
228
229
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
James Liu's avatar
James Liu committed
230
231
232
233
234
235
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EAGLE-3 Decoding\n",
    "\n",
simveit's avatar
simveit committed
236
    "You can enable EAGLE-3 decoding by setting `--speculative_algorithm EAGLE3` and choosing an appropriate model."
James Liu's avatar
James Liu committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "server_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model meta-llama/Llama-3.1-8B-Instruct  --speculative-algorithm EAGLE3 \\\n",
    "    --speculative-draft-model-path jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B --speculative-num-steps 5 \\\n",
    "        --speculative-eagle-topk 8 --speculative-num-draft-tokens 32 --mem-fraction 0.6 \\\n",
    "        --cuda-graph-max-bs 2 --dtype float16\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
    "\n",
    "print_highlight(f\"Response: {response}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
286
287
288
289
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
290
    "## References\n",
291
    "\n",
292
    "EAGLE process is as follows:\n",
293
    "\n",
294
295
296
    "- Within EAGLE the draft model predicts the next feature vector, i.e. the last hidden state of the original LLM, using the feature sequence $(f_1, ..., f_k)$ and the token sequence $(t_2, ..., t_{k+1})$. \n",
    "- The next token is then sampled from $p_{k+2}=\\text{LMHead}(f_{k+1})$. Afterwards, the two sequences are extended in a tree style—branching out multiple potential continuations, with the branching factor per step controlled by the `speculative_eagle_topk` parameter—to ensure a more coherent connection of context, and are given as input again.\n",
    "- EAGLE-2 additionally uses the draft model to evaluate how probable certain branches in the draft tree are, dynamically stopping the expansion of unlikely branches. After the expansion phase, reranking is employed to select only the top `speculative_num_draft_tokens` final nodes as draft tokens.\n",
James Liu's avatar
James Liu committed
297
    "- EAGLE-3 removes the feature prediction objective, incorporates low and mid-layer features, and is trained in an on-policy manner.\n",
298
    "\n",
simveit's avatar
simveit committed
299
300
301
302
    "This enhances drafting accuracy by operating on the features instead of tokens for more regular inputs and passing the tokens from the next timestep additionaly to minimize randomness effects from sampling. Furthermore the dynamic adjustment of the draft tree and selection of reranked final nodes increases acceptance rate of draft tokens further. For more details see [EAGLE-2](https://arxiv.org/abs/2406.16858) and [EAGLE-3](https://arxiv.org/abs/2503.01840) paper.\n",
    "\n",
    "\n",
    "For guidance how to train your own EAGLE model please see the [EAGLE repo](https://github.com/SafeAILab/EAGLE/tree/main?tab=readme-ov-file#train)."
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}