rotary_embedding.py 6.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from typing import Any, Dict, List, Optional, Tuple, Union

import pytest
import torch
from sgl_kernel import FusedSetKVBufferArg, apply_rope_with_cos_sin_cache_inplace


# vLLM torch native
def _apply_rotary_emb(
    x: torch.Tensor,
    cos: torch.Tensor,
    sin: torch.Tensor,
    is_neox_style: bool,
) -> torch.Tensor:
    """
    Args:
        x: [num_tokens, num_heads, head_size]
        cos: [num_tokens, head_size // 2]
        sin: [num_tokens, head_size // 2]
        is_neox_style: Whether to use the Neox-style or GPT-J-style rotary
            positional embeddings.
    """
    cos = cos.unsqueeze(-2).to(x.dtype)
    sin = sin.unsqueeze(-2).to(x.dtype)
    if is_neox_style:
        x1, x2 = torch.chunk(x, 2, dim=-1)
    else:
        x1 = x[..., ::2]
        x2 = x[..., 1::2]
    o1 = x1 * cos - x2 * sin
    o2 = x2 * cos + x1 * sin
    if is_neox_style:
        return torch.cat((o1, o2), dim=-1)
    else:
        return torch.stack((o1, o2), dim=-1).flatten(-2)


class RotaryEmbedding(torch.nn.Module):
    # Reference: https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/rotary_embedding.py
    def __init__(
        self,
        head_size: int,
        rotary_dim: int,
        max_position_embeddings: int,
        base: int,
        is_neox_style: bool,
        dtype: torch.dtype,
    ) -> None:
        super().__init__()
        self.head_size = head_size
        self.rotary_dim = rotary_dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        self.is_neox_style = is_neox_style
        self.dtype = dtype

        cache = self._compute_cos_sin_cache()
        self.cos_sin_cache: torch.Tensor
        self.register_buffer("cos_sin_cache", cache, persistent=False)

    def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
        inv_freq = 1.0 / (
            base
            ** (
                torch.arange(0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim
            )
        )
        return inv_freq

    def _compute_cos_sin_cache(self) -> torch.Tensor:
        """Compute the cos and sin cache."""
        inv_freq = self._compute_inv_freq(self.base)
        t = torch.arange(self.max_position_embeddings, dtype=torch.float)

        freqs = torch.einsum("i,j -> ij", t, inv_freq)
        cos = freqs.cos()
        sin = freqs.sin()
        cache = torch.cat((cos, sin), dim=-1)
        return cache

    def forward_native(
        self,
        positions: torch.Tensor,
        query: torch.Tensor,
        key: torch.Tensor,
        offsets: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """A PyTorch-native implementation of forward()."""
        if offsets is not None:
            positions = positions + offsets

        positions = positions.flatten()
        num_tokens = positions.shape[0]
        cos_sin = self.cos_sin_cache.index_select(0, positions)

        # Modification: float32 is required for the rotary embedding to work correctly
        query = query.to(torch.float32)
        key = key.to(torch.float32)

        cos, sin = cos_sin.chunk(2, dim=-1)

        query_shape = query.shape
        query = query.view(num_tokens, -1, self.head_size)
        query_rot = query[..., : self.rotary_dim]
        query_pass = query[..., self.rotary_dim :]
        query_rot = _apply_rotary_emb(query_rot, cos, sin, self.is_neox_style)
        query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)

        key_shape = key.shape
        key = key.view(num_tokens, -1, self.head_size)
        key_rot = key[..., : self.rotary_dim]
        key_pass = key[..., self.rotary_dim :]
        key_rot = _apply_rotary_emb(key_rot, cos, sin, self.is_neox_style)
        key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)

        # Modification: convert to the correct dtype
        query = query.to(self.dtype)
        key = key.to(self.dtype)
        return query, key


class FlashInferRotaryEmbedding(RotaryEmbedding):
    def forward_cuda(
        self,
        positions: torch.Tensor,
        query: torch.Tensor,
        key: torch.Tensor,
        fused_set_kv_buffer_arg: Optional[FusedSetKVBufferArg] = None,
        offsets: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:

        apply_rope_with_cos_sin_cache_inplace(
            positions=positions,
            query=query,
            key=key,
            fused_set_kv_buffer_arg=fused_set_kv_buffer_arg,
            head_size=self.head_size,
            cos_sin_cache=self.cos_sin_cache,
            is_neox=self.is_neox_style,
        )

        return query, key


class MHATokenToKVPool:
    KV_POOL_SIZE = 16384

    def __init__(
        self,
        head_num: int,
        head_dim: int,
    ):
        self.head_num = head_num
        self.head_dim = head_dim
        self.size = MHATokenToKVPool.KV_POOL_SIZE
        self.page_size = 1
        self.store_dtype = torch.bfloat16
        self.device = "cuda"
        self.layer_num = 1
        self.start_layer = 0
        self._create_buffers()

    def _create_buffers(self):
        self.k_buffer = [
            torch.zeros(
                (self.size + self.page_size, self.head_num, self.head_dim),
                dtype=self.store_dtype,
                device=self.device,
            )
            for _ in range(self.layer_num)
        ]
        self.v_buffer = [
            torch.zeros(
                (self.size + self.page_size, self.head_num, self.head_dim),
                dtype=self.store_dtype,
                device=self.device,
            )
            for _ in range(self.layer_num)
        ]

    def set_kv_buffer(
        self,
        loc: torch.Tensor,
        cache_k: torch.Tensor,
        cache_v: torch.Tensor,
    ):
        layer_id = 0
        self.k_buffer[layer_id - self.start_layer][loc] = cache_k
        self.v_buffer[layer_id - self.start_layer][loc] = cache_v


def create_inputs(
    head_size: int,
    batch_size: int,
    seq_len: int,
    device,
    dtype: torch.dtype,
    num_q_heads: int,
    num_kv_heads: int,
):
    pos_ids = torch.arange(seq_len, device=device).repeat(batch_size)
    query = torch.randn(
        batch_size * seq_len, num_q_heads * head_size, dtype=dtype, device=device
    )
    key = torch.randn(
        batch_size * seq_len, num_kv_heads * head_size, dtype=dtype, device=device
    )
    value = torch.randn(
        batch_size * seq_len, num_kv_heads * head_size, dtype=dtype, device=device
    )
    out_cache_loc = torch.randperm(
        MHATokenToKVPool.KV_POOL_SIZE, dtype=torch.int64, device=device
    )[: batch_size * seq_len].clone()

    return dict(
        pos_ids=pos_ids, query=query, key=key, value=value, out_cache_loc=out_cache_loc
    )