test_fp4_quantize.py 4.5 KB
Newer Older
Trevor Morris's avatar
Trevor Morris committed
1
2
3
4
import pytest
import torch
from sgl_kernel import scaled_fp4_quant

5
skip_condition = torch.cuda.get_device_capability() < (10, 0)
Trevor Morris's avatar
Trevor Morris committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

DTYPES = [torch.float16, torch.bfloat16]
SHAPES = [(128, 64), (128, 128), (256, 64), (256, 128)]
PAD_SHAPES = [
    (90, 64),
    (150, 64),
    (128, 48),
    (128, 80),
    (150, 80),
    (90, 48),
    (90, 128),
    (150, 128),
    (150, 48),
    (90, 80),
]

FLOAT4_E2M1_MAX = 6.0
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max

# E2M1 to float
# 0111 -> 6
# 0110 -> 4
# 0101 -> 3
# 0100 -> 2
# 0011 -> 1.5
# 0010 -> 1
# 0001 -> 0.5
# 0000 -> 0
E2M1_TO_FLOAT32 = [
    0.0,
    0.5,
    1.0,
    1.5,
    2.0,
    3.0,
    4.0,
    6.0,
    0.0,
    -0.5,
    -1.0,
    -1.5,
    -2.0,
    -3.0,
    -4.0,
    -6.0,
]
BLOCK_SIZE = 16


def cast_from_fp4(x, m, n):
    # The fp4 values are packed in uint8 as [v_1st | v_2nd]
    v_2nd = x & 0xF
    v_1st = (x >> 4) & 0xF
    c = torch.stack((v_2nd, v_1st), dim=-1)
    out = torch.tensor([E2M1_TO_FLOAT32[x] for x in c.flatten()])
    out = out.reshape(m, n).to(torch.float32)
    return out


def cast_to_fp4(x):
    sign = torch.sign(x)
    x = torch.abs(x)
    x[(x >= 0.0) & (x <= 0.25)] = 0.0
    x[(x > 0.25) & (x < 0.75)] = 0.5
    x[(x >= 0.75) & (x <= 1.25)] = 1.0
    x[(x > 1.25) & (x < 1.75)] = 1.5
    x[(x >= 1.75) & (x <= 2.5)] = 2.0
    x[(x > 2.5) & (x < 3.5)] = 3.0
    x[(x >= 3.5) & (x <= 5.0)] = 4.0
    x[x > 5.0] = 6.0
    return x * sign


def get_reciprocal(x):
    if isinstance(x, torch.Tensor):
        return torch.where(x == 0, torch.tensor(0.0, dtype=x.dtype), 1.0 / x)
    elif isinstance(x, (float, int)):
        return 0.0 if x == 0 else 1.0 / x
    else:
        raise TypeError("Input must be a float, int, or a torch.Tensor.")


def ref_nvfp4_quant(x, global_scale):
    assert global_scale.dtype == torch.float32
    assert x.ndim == 2
    m, n = x.shape
    x = torch.reshape(x, (m, n // BLOCK_SIZE, BLOCK_SIZE))
    vec_max = torch.max(torch.abs(x), dim=-1, keepdim=True)[0].to(torch.float32)
    scale = global_scale * (vec_max * get_reciprocal(FLOAT4_E2M1_MAX))
    scale = scale.to(torch.float8_e4m3fn).to(torch.float32)
    output_scale = get_reciprocal(scale * get_reciprocal(global_scale))

    scaled_x = x.to(torch.float32) * output_scale
    clipped_x = torch.clamp(scaled_x, -6.0, 6.0).reshape(m, n)
    return cast_to_fp4(clipped_x), scale.squeeze(-1)


def recover_swizzled_scales(scale, m, n):
    rounded_m = ((m + 128 - 1) // 128) * 128
    scale_n = n // BLOCK_SIZE
    rounded_n = ((scale_n + 4 - 1) // 4) * 4
    # Recover the swizzled scaling factor to linear layout
    tmp = torch.reshape(scale, (1, rounded_m // 128, rounded_n // 4, 32, 4, 4))
    tmp = torch.permute(tmp, (0, 1, 4, 3, 2, 5))
    result = torch.reshape(tmp, (rounded_m, rounded_n)).to(torch.float32)
    return result[:m, :scale_n]


114
115
116
@pytest.mark.skipif(
    skip_condition, reason="Nvfp4 Requires compute capability of 10 or above."
)
Trevor Morris's avatar
Trevor Morris committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("shape", SHAPES)
@torch.inference_mode()
def test_quantize_to_fp4(
    dtype: torch.dtype,
    shape: tuple[int, int],
) -> None:
    torch.manual_seed(42)
    torch.set_default_device("cuda:0")

    m, n = shape

    x = torch.randn((m, n), dtype=dtype)
    tensor_amax = torch.abs(x).max().to(torch.float32)
    global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / tensor_amax
    out_ref, scale_ref = ref_nvfp4_quant(x, global_scale)

    out, out_scale = scaled_fp4_quant(x, global_scale)
    scale_ans = recover_swizzled_scales(out_scale, m, n)
    out_ans = cast_from_fp4(out, m, n)

    torch.testing.assert_close(out_ans, out_ref)
    torch.testing.assert_close(scale_ans, scale_ref)


142
143
144
@pytest.mark.skipif(
    skip_condition, reason="Nvfp4 Requires compute capability of 10 or above."
)
Trevor Morris's avatar
Trevor Morris committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
@pytest.mark.parametrize("pad_shape", PAD_SHAPES)
@torch.inference_mode()
def test_quantize_to_fp4_padded(pad_shape: tuple[int, int]) -> None:
    torch.manual_seed(42)
    dtype = torch.float16
    torch.set_default_device("cuda:0")

    m, n = pad_shape

    x = torch.randn((m, n), dtype=dtype)

    tensor_amax = torch.abs(x).max().to(torch.float32)
    global_scale = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / tensor_amax
    out_ref, scale_ref = ref_nvfp4_quant(x, global_scale)

    out, out_scale = scaled_fp4_quant(x, global_scale)

    scale_ans = recover_swizzled_scales(out_scale, m, n)
    out_ans = cast_from_fp4(out, m, n)

    torch.testing.assert_close(out_ans, out_ref)
    torch.testing.assert_close(scale_ans, scale_ref)
167
168
169
170


if __name__ == "__main__":
    pytest.main([__file__])