router.rs 48 KB
Newer Older
1
2
//! OpenAI router - main coordinator that delegates to specialized modules

3
4
use std::{
    any::Any,
5
    collections::HashSet,
6
    sync::{atomic::AtomicBool, Arc},
7
    time::{Duration, Instant},
8
};
9

10
11
12
13
14
15
16
use axum::{
    body::Body,
    extract::Request,
    http::{header::CONTENT_TYPE, HeaderMap, HeaderValue, StatusCode},
    response::{IntoResponse, Response},
    Json,
};
17
use dashmap::DashMap;
18
use futures_util::StreamExt;
19
use once_cell::sync::Lazy;
20
21
22
use serde_json::{json, to_value, Value};
use tokio::sync::mpsc;
use tokio_stream::wrappers::UnboundedReceiverStream;
23
use tracing::warn;
24
25
26

// Import from sibling modules
use super::conversations::{
27
28
29
    create_conversation, create_conversation_items, delete_conversation, delete_conversation_item,
    get_conversation, get_conversation_item, list_conversation_items, persist_conversation_items,
    update_conversation,
30
};
31
32
use super::{
    mcp::{
33
34
        ensure_request_mcp_client, execute_tool_loop, has_web_search_preview_tool,
        is_web_search_mcp_available, prepare_mcp_payload_for_streaming, McpLoopConfig,
35
36
37
    },
    responses::{mask_tools_as_mcp, patch_streaming_response_json},
    streaming::handle_streaming_response,
38
    utils::{apply_provider_headers, extract_auth_header, probe_endpoint_for_model, ToolContext},
39
40
41
42
};
use crate::{
    core::{CircuitBreaker, CircuitBreakerConfig as CoreCircuitBreakerConfig},
    data_connector::{
43
44
        ConversationId, ConversationItemStorage, ConversationStorage, ListParams, ResponseId,
        ResponseStorage, SortOrder,
45
    },
46
    mcp::McpManager,
47
48
    protocols::{
        chat::ChatCompletionRequest,
49
        classify::ClassifyRequest,
50
51
52
53
54
        completion::CompletionRequest,
        embedding::EmbeddingRequest,
        generate::GenerateRequest,
        rerank::RerankRequest,
        responses::{
55
56
            generate_id, ResponseContentPart, ResponseInput, ResponseInputOutputItem,
            ResponsesGetParams, ResponsesRequest,
57
58
59
        },
    },
    routers::header_utils::apply_request_headers,
60
61
62
63
64
65
};

// ============================================================================
// OpenAIRouter Struct
// ============================================================================

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/// Fields specific to SGLang that should be stripped when forwarding to OpenAI-compatible endpoints
static SGLANG_FIELDS: Lazy<HashSet<&'static str>> = Lazy::new(|| {
    HashSet::from([
        "request_id",
        "priority",
        "top_k",
        "min_p",
        "min_tokens",
        "regex",
        "ebnf",
        "stop_token_ids",
        "no_stop_trim",
        "ignore_eos",
        "continue_final_message",
        "skip_special_tokens",
        "lora_path",
        "session_params",
        "separate_reasoning",
        "stream_reasoning",
        "chat_template_kwargs",
        "return_hidden_states",
        "repetition_penalty",
        "sampling_seed",
    ])
});

92
93
94
95
96
97
98
/// Cached endpoint information
#[derive(Clone, Debug)]
struct CachedEndpoint {
    url: String,
    cached_at: Instant,
}

99
100
101
102
/// Router for OpenAI backend
pub struct OpenAIRouter {
    /// HTTP client for upstream OpenAI-compatible API
    client: reqwest::Client,
103
104
105
106
    /// Multiple OpenAI-compatible API endpoints (OpenAI, xAI, etc.)
    worker_urls: Vec<String>,
    /// Model cache: model_id -> endpoint URL
    model_cache: Arc<DashMap<String, CachedEndpoint>>,
107
108
109
110
111
    /// Circuit breaker
    circuit_breaker: CircuitBreaker,
    /// Health status
    healthy: AtomicBool,
    /// Response storage for managing conversation history
112
    response_storage: Arc<dyn ResponseStorage>,
113
    /// Conversation storage backend
114
    conversation_storage: Arc<dyn ConversationStorage>,
115
    /// Conversation item storage backend
116
    conversation_item_storage: Arc<dyn ConversationItemStorage>,
117
118
    /// MCP manager (handles both static and dynamic servers)
    mcp_manager: Arc<McpManager>,
119
120
121
122
123
}

impl std::fmt::Debug for OpenAIRouter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("OpenAIRouter")
124
            .field("worker_urls", &self.worker_urls)
125
126
127
128
129
130
131
132
133
            .field("healthy", &self.healthy)
            .finish()
    }
}

impl OpenAIRouter {
    /// Maximum number of conversation items to attach as input when a conversation is provided
    const MAX_CONVERSATION_HISTORY_ITEMS: usize = 100;

134
135
136
    /// Model discovery cache TTL (1 hour)
    const MODEL_CACHE_TTL_SECS: u64 = 3600;

137
138
    /// Create a new OpenAI router
    pub async fn new(
139
        worker_urls: Vec<String>,
140
        ctx: &Arc<crate::app_context::AppContext>,
141
    ) -> Result<Self, String> {
142
143
        // Use HTTP client from AppContext
        let client = ctx.client.clone();
144

145
146
147
148
149
        // Normalize URLs (remove trailing slashes)
        let worker_urls: Vec<String> = worker_urls
            .into_iter()
            .map(|url| url.trim_end_matches('/').to_string())
            .collect();
150

151
152
153
154
155
156
157
158
        // Convert circuit breaker config from AppContext
        let cb = &ctx.router_config.circuit_breaker;
        let core_cb_config = CoreCircuitBreakerConfig {
            failure_threshold: cb.failure_threshold,
            success_threshold: cb.success_threshold,
            timeout_duration: Duration::from_secs(cb.timeout_duration_secs),
            window_duration: Duration::from_secs(cb.window_duration_secs),
        };
159
160
161

        let circuit_breaker = CircuitBreaker::with_config(core_cb_config);

162
163
164
165
166
167
        // Get MCP manager from AppContext (must be initialized)
        let mcp_manager = ctx
            .mcp_manager
            .get()
            .ok_or_else(|| "MCP manager not initialized in AppContext".to_string())?
            .clone();
168
169
170

        Ok(Self {
            client,
171
172
            worker_urls,
            model_cache: Arc::new(DashMap::new()),
173
174
            circuit_breaker,
            healthy: AtomicBool::new(true),
175
176
177
            response_storage: ctx.response_storage.clone(),
            conversation_storage: ctx.conversation_storage.clone(),
            conversation_item_storage: ctx.conversation_item_storage.clone(),
178
179
180
181
            mcp_manager,
        })
    }

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    /// Discover which endpoint has the model
    async fn find_endpoint_for_model(
        &self,
        model_id: &str,
        auth_header: Option<&str>,
    ) -> Result<String, Response> {
        // Single endpoint - fast path
        if self.worker_urls.len() == 1 {
            return Ok(self.worker_urls[0].clone());
        }

        // Check cache
        if let Some(entry) = self.model_cache.get(model_id) {
            if entry.cached_at.elapsed() < Duration::from_secs(Self::MODEL_CACHE_TTL_SECS) {
                return Ok(entry.url.clone());
            }
        }

        // Probe all endpoints in parallel
        let mut handles = vec![];
        let model = model_id.to_string();
        let auth = auth_header.map(|s| s.to_string());

        for url in &self.worker_urls {
            let handle = tokio::spawn(probe_endpoint_for_model(
                self.client.clone(),
                url.clone(),
                model.clone(),
                auth.clone(),
            ));
            handles.push(handle);
        }

        // Return first successful endpoint
        for handle in handles {
            if let Ok(Ok(url)) = handle.await {
                // Cache it
                self.model_cache.insert(
                    model_id.to_string(),
                    CachedEndpoint {
                        url: url.clone(),
                        cached_at: Instant::now(),
                    },
                );
                return Ok(url);
            }
        }

        // Model not found on any endpoint
        Err((
            StatusCode::NOT_FOUND,
            Json(json!({
                "error": {
                    "message": format!("Model '{}' not found on any endpoint", model_id),
                    "type": "model_not_found",
                }
            })),
        )
            .into_response())
    }

243
244
245
246
247
248
249
250
    /// Handle non-streaming response with optional MCP tool loop
    async fn handle_non_streaming_response(
        &self,
        url: String,
        headers: Option<&HeaderMap>,
        mut payload: Value,
        original_body: &ResponsesRequest,
        original_previous_response_id: Option<String>,
251
        tool_context: ToolContext,
252
253
    ) -> Response {
        // Check if MCP is active for this request
254
255
256
257
258
259
260
        // Ensure dynamic client is created if needed
        if let Some(ref tools) = original_body.tools {
            ensure_request_mcp_client(&self.mcp_manager, tools.as_slice()).await;
        }

        // Use the tool loop if the manager has any tools available (static or dynamic).
        let active_mcp = if self.mcp_manager.list_tools().is_empty() {
261
            None
262
263
        } else {
            Some(&self.mcp_manager)
264
        };
265
266
267
268
269

        let mut response_json: Value;

        // If MCP is active, execute tool loop
        if let Some(mcp) = active_mcp {
270
271
272
273
            let config = McpLoopConfig {
                tool_context,
                ..Default::default()
            };
274
275

            // Transform MCP tools to function tools
276
            prepare_mcp_payload_for_streaming(&mut payload, mcp, tool_context);
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

            match execute_tool_loop(
                &self.client,
                &url,
                headers,
                payload,
                original_body,
                mcp,
                &config,
            )
            .await
            {
                Ok(resp) => response_json = resp,
                Err(err) => {
                    self.circuit_breaker.record_failure();
                    return (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(json!({"error": {"message": err}})),
                    )
                        .into_response();
                }
            }
        } else {
            // No MCP - simple request
301

302
303
304
305
306
307
308
309
310
            let mut request_builder = self.client.post(&url).json(&payload);
            if let Some(h) = headers {
                request_builder = apply_request_headers(h, request_builder, true);
            }

            let response = match request_builder.send().await {
                Ok(r) => r,
                Err(e) => {
                    self.circuit_breaker.record_failure();
311
312
313
314
315
                    tracing::error!(
                        url = %url,
                        error = %e,
                        "Failed to forward request to OpenAI"
                    );
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
                    return (
                        StatusCode::BAD_GATEWAY,
                        format!("Failed to forward request to OpenAI: {}", e),
                    )
                        .into_response();
                }
            };

            if !response.status().is_success() {
                self.circuit_breaker.record_failure();
                let status = StatusCode::from_u16(response.status().as_u16())
                    .unwrap_or(StatusCode::INTERNAL_SERVER_ERROR);
                let body = response.text().await.unwrap_or_default();
                return (status, body).into_response();
            }

            response_json = match response.json::<Value>().await {
                Ok(r) => r,
                Err(e) => {
                    self.circuit_breaker.record_failure();
                    return (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        format!("Failed to parse upstream response: {}", e),
                    )
                        .into_response();
                }
            };

            self.circuit_breaker.record_success();
        }

        // Patch response with metadata
        mask_tools_as_mcp(&mut response_json, original_body);
        patch_streaming_response_json(
            &mut response_json,
            original_body,
            original_previous_response_id.as_deref(),
        );

355
356
357
358
359
360
361
362
363
364
365
        // Always persist conversation items and response (even without conversation)
        if let Err(err) = persist_conversation_items(
            self.conversation_storage.clone(),
            self.conversation_item_storage.clone(),
            self.response_storage.clone(),
            &response_json,
            original_body,
        )
        .await
        {
            warn!("Failed to persist conversation items: {}", err);
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        }

        (StatusCode::OK, Json(response_json)).into_response()
    }
}

// ============================================================================
// RouterTrait Implementation
// ============================================================================

#[async_trait::async_trait]
impl crate::routers::RouterTrait for OpenAIRouter {
    fn as_any(&self) -> &dyn Any {
        self
    }

    async fn health_generate(&self, _req: Request<Body>) -> Response {
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
        // Check all endpoints in parallel - only healthy if ALL are healthy
        if self.worker_urls.is_empty() {
            return (StatusCode::SERVICE_UNAVAILABLE, "No endpoints configured").into_response();
        }

        let mut handles = vec![];
        for url in &self.worker_urls {
            let url = url.clone();
            let client = self.client.clone();

            let handle = tokio::spawn(async move {
                let probe_url = format!("{}/v1/models", url);
                match client
                    .get(&probe_url)
                    .timeout(Duration::from_secs(2))
                    .send()
                    .await
                {
                    Ok(resp) => {
                        let code = resp.status();
                        // Treat success and auth-required as healthy (endpoint reachable)
                        if code.is_success() || code.as_u16() == 401 || code.as_u16() == 403 {
                            Ok(())
                        } else {
                            Err(format!("Endpoint {} returned status {}", url, code))
                        }
                    }
                    Err(e) => Err(format!("Endpoint {} error: {}", url, e)),
411
                }
412
413
414
415
416
417
418
419
420
421
422
423
            });

            handles.push(handle);
        }

        // Collect all results
        let mut errors = Vec::new();
        for handle in handles {
            match handle.await {
                Ok(Ok(())) => (),
                Ok(Err(e)) => errors.push(e),
                Err(e) => errors.push(format!("Task join error: {}", e)),
424
            }
425
426
427
428
429
430
        }

        if errors.is_empty() {
            (StatusCode::OK, "OK").into_response()
        } else {
            (
431
                StatusCode::SERVICE_UNAVAILABLE,
432
                format!("Some endpoints unhealthy: {}", errors.join(", ")),
433
            )
434
                .into_response()
435
436
437
438
439
440
        }
    }

    async fn get_server_info(&self, _req: Request<Body>) -> Response {
        let info = json!({
            "router_type": "openai",
441
442
            "workers": self.worker_urls.len(),
            "worker_urls": &self.worker_urls
443
444
445
446
447
        });
        (StatusCode::OK, info.to_string()).into_response()
    }

    async fn get_models(&self, req: Request<Body>) -> Response {
448
449
450
        // Aggregate models from all endpoints
        if self.worker_urls.is_empty() {
            return (StatusCode::SERVICE_UNAVAILABLE, "No endpoints configured").into_response();
451
452
        }

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        let headers = req.headers();
        let auth = headers
            .get("authorization")
            .or_else(|| headers.get("Authorization"));

        // Query all endpoints in parallel
        let mut handles = vec![];
        for url in &self.worker_urls {
            let url = url.clone();
            let client = self.client.clone();
            let auth = auth.cloned();

            let handle = tokio::spawn(async move {
                let models_url = format!("{}/v1/models", url);
                let req = client.get(&models_url);

                // Apply provider-specific headers (handles Anthropic, xAI, OpenAI, etc.)
                let req = apply_provider_headers(req, &url, auth.as_ref());

                match req.send().await {
                    Ok(res) => {
                        if res.status().is_success() {
                            match res.json::<Value>().await {
                                Ok(json) => Ok(json),
                                Err(e) => {
                                    tracing::warn!(
                                        "Failed to parse models response from '{}': {}",
                                        url,
                                        e
                                    );
                                    Err(())
                                }
                            }
                        } else {
                            tracing::warn!(
                                "Getting models from '{}' failed with status: {}",
                                url,
                                res.status()
                            );
                            Err(())
493
494
                        }
                    }
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
                    Err(e) => {
                        tracing::warn!("Request to get models from '{}' failed: {}", url, e);
                        Err(())
                    }
                }
            });

            handles.push(handle);
        }

        // Collect all model lists
        let mut all_models = Vec::new();
        for handle in handles {
            if let Ok(Ok(json)) = handle.await {
                if let Some(data) = json.get("data").and_then(|v| v.as_array()) {
                    all_models.extend_from_slice(data);
511
512
513
                }
            }
        }
514
515
516
517
518
519
520
521

        // Return aggregated models
        let response_json = json!({
            "object": "list",
            "data": all_models
        });

        (StatusCode::OK, Json(response_json)).into_response()
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    }

    async fn get_model_info(&self, _req: Request<Body>) -> Response {
        // Not directly supported without model param; return 501
        (
            StatusCode::NOT_IMPLEMENTED,
            "get_model_info not implemented for OpenAI router",
        )
            .into_response()
    }

    async fn route_generate(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &GenerateRequest,
        _model_id: Option<&str>,
    ) -> Response {
        // Generate endpoint is SGLang-specific, not supported for OpenAI backend
        (
            StatusCode::NOT_IMPLEMENTED,
            "Generate endpoint not supported for OpenAI backend",
        )
            .into_response()
    }

    async fn route_chat(
        &self,
        headers: Option<&HeaderMap>,
        body: &ChatCompletionRequest,
        _model_id: Option<&str>,
    ) -> Response {
        if !self.circuit_breaker.can_execute() {
            return (StatusCode::SERVICE_UNAVAILABLE, "Circuit breaker open").into_response();
        }

557
558
559
560
561
562
563
564
565
566
567
568
        // Extract auth header
        let auth = extract_auth_header(headers);

        // Find endpoint for model
        let base_url = match self
            .find_endpoint_for_model(body.model.as_str(), auth)
            .await
        {
            Ok(url) => url,
            Err(response) => return response,
        };

569
570
571
572
573
574
575
576
577
578
579
580
        // Serialize request body, removing SGLang-only fields
        let mut payload = match to_value(body) {
            Ok(v) => v,
            Err(e) => {
                return (
                    StatusCode::BAD_REQUEST,
                    format!("Failed to serialize request: {}", e),
                )
                    .into_response();
            }
        };
        if let Some(obj) = payload.as_object_mut() {
581
            // Always remove SGLang-specific fields (unsupported by OpenAI)
582
            obj.retain(|k, _| !SGLANG_FIELDS.contains(&k.as_str()));
583
584
585
586
            // Remove logprobs if false (Gemini don't accept it)
            if obj.get("logprobs").and_then(|v| v.as_bool()) == Some(false) {
                obj.remove("logprobs");
            }
587
588
        }

589
        let url = format!("{}/v1/chat/completions", base_url);
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
        let mut req = self.client.post(&url).json(&payload);

        // Forward Authorization header if provided
        if let Some(h) = headers {
            if let Some(auth) = h.get("authorization").or_else(|| h.get("Authorization")) {
                req = req.header("Authorization", auth);
            }
        }

        // Accept SSE when stream=true
        if body.stream {
            req = req.header("Accept", "text/event-stream");
        }

        let resp = match req.send().await {
            Ok(r) => r,
            Err(e) => {
                self.circuit_breaker.record_failure();
                return (
                    StatusCode::SERVICE_UNAVAILABLE,
                    format!("Failed to contact upstream: {}", e),
                )
                    .into_response();
            }
        };

        let status = StatusCode::from_u16(resp.status().as_u16())
            .unwrap_or(StatusCode::INTERNAL_SERVER_ERROR);

        if !body.stream {
            // Capture Content-Type before consuming response body
            let content_type = resp.headers().get(CONTENT_TYPE).cloned();
            match resp.bytes().await {
                Ok(body) => {
                    self.circuit_breaker.record_success();
                    let mut response = Response::new(Body::from(body));
                    *response.status_mut() = status;
                    if let Some(ct) = content_type {
                        response.headers_mut().insert(CONTENT_TYPE, ct);
                    }
                    response
                }
                Err(e) => {
                    self.circuit_breaker.record_failure();
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        format!("Failed to read response: {}", e),
                    )
                        .into_response()
                }
            }
        } else {
            // Stream SSE bytes to client
            let stream = resp.bytes_stream();
            let (tx, rx) = mpsc::unbounded_channel();
            tokio::spawn(async move {
                let mut s = stream;
                while let Some(chunk) = s.next().await {
                    match chunk {
                        Ok(bytes) => {
                            if tx.send(Ok(bytes)).is_err() {
                                break;
                            }
                        }
                        Err(e) => {
                            let _ = tx.send(Err(format!("Stream error: {}", e)));
                            break;
                        }
                    }
                }
            });
            let mut response = Response::new(Body::from_stream(UnboundedReceiverStream::new(rx)));
            *response.status_mut() = status;
            response
                .headers_mut()
                .insert(CONTENT_TYPE, HeaderValue::from_static("text/event-stream"));
            response
        }
    }

    async fn route_completion(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &CompletionRequest,
        _model_id: Option<&str>,
    ) -> Response {
        // Completion endpoint not implemented for OpenAI backend
        (
            StatusCode::NOT_IMPLEMENTED,
            "Completion endpoint not implemented for OpenAI backend",
        )
            .into_response()
    }

    async fn route_responses(
        &self,
        headers: Option<&HeaderMap>,
        body: &ResponsesRequest,
        model_id: Option<&str>,
    ) -> Response {
690
691
692
693
694
695
696
697
698
699
700
        // Extract auth header
        let auth = extract_auth_header(headers);

        // Find endpoint for model (use model_id if provided, otherwise use body.model)
        let model = model_id.unwrap_or(body.model.as_str());
        let base_url = match self.find_endpoint_for_model(model, auth).await {
            Ok(url) => url,
            Err(response) => return response,
        };

        let url = format!("{}/v1/responses", base_url);
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
        // Detect web_search_preview tool and verify MCP server availability
        let tool_context = if let Some(ref tools) = body.tools {
            if has_web_search_preview_tool(tools) {
                ToolContext::WebSearchPreview
            } else {
                ToolContext::Regular
            }
        } else {
            ToolContext::Regular
        };

        if tool_context.is_web_search() {
            // Check if web_search_preview MCP server is available
            if !is_web_search_mcp_available(&self.mcp_manager).await {
                return (
                    StatusCode::BAD_REQUEST,
                    Json(json!({
                        "error": {
                            "message": "Web search preview is currently unavailable. Please contact your server administrator.",
                            "type": "invalid_request_error",
                            "param": "tools",
                            "code": "web_search_unavailable"
                        }
                    })),
                )
                    .into_response();
            }
        }

731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
        // Validate mutually exclusive params: previous_response_id and conversation
        // TODO: this validation logic should move the right place, also we need a proper error message module
        if body.previous_response_id.is_some() && body.conversation.is_some() {
            return (
                StatusCode::BAD_REQUEST,
                Json(json!({
                    "error": {
                        "message": "Mutually exclusive parameters. Ensure you are only providing one of: 'previous_response_id' or 'conversation'.",
                        "type": "invalid_request_error",
                        "param": Value::Null,
                        "code": "mutually_exclusive_parameters"
                    }
                })),
            )
                .into_response();
        }

748
        // Clone the body for validation and logic, but we'll build payload differently
749
750
        let mut request_body = body.clone();
        if let Some(model) = model_id {
751
            request_body.model = model.to_string();
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
        }
        // Do not forward conversation field upstream; retain for local persistence only
        request_body.conversation = None;

        // Store the original previous_response_id for the response
        let original_previous_response_id = request_body.previous_response_id.clone();

        // Handle previous_response_id by loading prior context
        let mut conversation_items: Option<Vec<ResponseInputOutputItem>> = None;
        if let Some(prev_id_str) = request_body.previous_response_id.clone() {
            let prev_id = ResponseId::from(prev_id_str.as_str());
            match self
                .response_storage
                .get_response_chain(&prev_id, None)
                .await
            {
                Ok(chain) => {
                    let mut items = Vec::new();
                    for stored in chain.responses.iter() {
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
                        // Convert input items from stored input (which is now a JSON array)
                        if let Some(input_arr) = stored.input.as_array() {
                            for item in input_arr {
                                match serde_json::from_value::<ResponseInputOutputItem>(
                                    item.clone(),
                                ) {
                                    Ok(input_item) => {
                                        items.push(input_item);
                                    }
                                    Err(e) => {
                                        warn!(
                                            "Failed to deserialize stored input item: {}. Item: {}",
                                            e, item
                                        );
                                    }
                                }
                            }
                        }

                        // Convert output items from stored output (which is now a JSON array)
                        if let Some(output_arr) = stored.output.as_array() {
792
                            for item in output_arr {
793
794
795
796
797
798
799
800
801
                                match serde_json::from_value::<ResponseInputOutputItem>(
                                    item.clone(),
                                ) {
                                    Ok(output_item) => {
                                        items.push(output_item);
                                    }
                                    Err(e) => {
                                        warn!("Failed to deserialize stored output item: {}. Item: {}", e, item);
                                    }
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
                                }
                            }
                        }
                    }
                    conversation_items = Some(items);
                    request_body.previous_response_id = None;
                }
                Err(e) => {
                    warn!(
                        "Failed to load previous response chain for {}: {}",
                        prev_id_str, e
                    );
                }
            }
        }

        // Handle conversation by loading history
        if let Some(conv_id_str) = body.conversation.clone() {
            let conv_id = ConversationId::from(conv_id_str.as_str());

            // Verify conversation exists
            if let Ok(None) = self.conversation_storage.get_conversation(&conv_id).await {
                return (
                    StatusCode::NOT_FOUND,
                    Json(json!({"error": "Conversation not found"})),
                )
                    .into_response();
            }

            // Load conversation history (ascending order for chronological context)
            let params = ListParams {
                limit: Self::MAX_CONVERSATION_HISTORY_ITEMS,
                order: SortOrder::Asc,
                after: None,
            };

            match self
                .conversation_item_storage
                .list_items(&conv_id, params)
                .await
            {
                Ok(stored_items) => {
                    let mut items: Vec<ResponseInputOutputItem> = Vec::new();
                    for item in stored_items.into_iter() {
846
847
848
849
850
                        // Include messages, function calls, and function call outputs
                        // Skip reasoning items as they're internal processing details
                        match item.item_type.as_str() {
                            "message" => {
                                match serde_json::from_value::<Vec<ResponseContentPart>>(
851
                                    item.content.clone(),
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
                                ) {
                                    Ok(content_parts) => {
                                        items.push(ResponseInputOutputItem::Message {
                                            id: item.id.0.clone(),
                                            role: item
                                                .role
                                                .clone()
                                                .unwrap_or_else(|| "user".to_string()),
                                            content: content_parts,
                                            status: item.status.clone(),
                                        });
                                    }
                                    Err(e) => {
                                        tracing::error!(
                                            "Failed to deserialize message content: {}",
                                            e
                                        );
                                    }
                                }
                            }
                            "function_call" => {
                                // The entire function_call item is stored in content field
                                match serde_json::from_value::<ResponseInputOutputItem>(
                                    item.content.clone(),
                                ) {
                                    Ok(func_call) => items.push(func_call),
                                    Err(e) => {
                                        tracing::error!(
                                            "Failed to deserialize function_call: {}",
                                            e
                                        );
                                    }
                                }
                            }
                            "function_call_output" => {
                                // The entire function_call_output item is stored in content field
                                tracing::debug!(
                                    "Loading function_call_output from DB - content: {}",
                                    serde_json::to_string_pretty(&item.content)
                                        .unwrap_or_else(|_| "failed to serialize".to_string())
                                );
                                match serde_json::from_value::<ResponseInputOutputItem>(
                                    item.content.clone(),
                                ) {
                                    Ok(func_output) => {
                                        tracing::debug!(
                                            "Successfully deserialized function_call_output"
                                        );
                                        items.push(func_output);
                                    }
                                    Err(e) => {
                                        tracing::error!(
                                            "Failed to deserialize function_call_output: {}",
                                            e
                                        );
                                    }
                                }
                            }
                            "reasoning" => {
                                // Skip reasoning items - they're internal processing details
                            }
                            _ => {
                                // Skip unknown item types
                                warn!("Unknown item type in conversation: {}", item.item_type);
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
                            }
                        }
                    }

                    // Append current request
                    match &request_body.input {
                        ResponseInput::Text(text) => {
                            items.push(ResponseInputOutputItem::Message {
                                id: format!("msg_u_{}", conv_id.0),
                                role: "user".to_string(),
                                content: vec![ResponseContentPart::InputText {
                                    text: text.clone(),
                                }],
                                status: Some("completed".to_string()),
                            });
                        }
                        ResponseInput::Items(current_items) => {
933
934
935
936
937
938
                            // Process all item types, converting SimpleInputMessage to Message
                            for item in current_items.iter() {
                                let normalized =
                                    crate::protocols::responses::normalize_input_item(item);
                                items.push(normalized);
                            }
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
                        }
                    }

                    request_body.input = ResponseInput::Items(items);
                }
                Err(e) => {
                    warn!("Failed to load conversation history: {}", e);
                }
            }
        }

        // If we have conversation_items from previous_response_id, use them
        if let Some(mut items) = conversation_items {
            // Append current request
            match &request_body.input {
                ResponseInput::Text(text) => {
                    items.push(ResponseInputOutputItem::Message {
                        id: format!(
                            "msg_u_{}",
                            original_previous_response_id
                                .as_ref()
                                .unwrap_or(&"new".to_string())
                        ),
                        role: "user".to_string(),
                        content: vec![ResponseContentPart::InputText { text: text.clone() }],
                        status: Some("completed".to_string()),
                    });
                }
                ResponseInput::Items(current_items) => {
968
969
970
971
972
                    // Process all item types, converting SimpleInputMessage to Message
                    for item in current_items.iter() {
                        let normalized = crate::protocols::responses::normalize_input_item(item);
                        items.push(normalized);
                    }
973
974
975
976
977
978
979
                }
            }

            request_body.input = ResponseInput::Items(items);
        }

        // Always set store=false for upstream (we store internally)
980
        request_body.store = Some(false);
981
982
983
984
        // Filter out reasoning items from input - they're internal processing details
        if let ResponseInput::Items(ref mut items) = request_body.input {
            items.retain(|item| !matches!(item, ResponseInputOutputItem::Reasoning { .. }));
        }
985
986
987
988
989
990
991
992
993
994
995
996
997

        // Convert to JSON and strip SGLang-specific fields
        let mut payload = match to_value(&request_body) {
            Ok(v) => v,
            Err(e) => {
                return (
                    StatusCode::BAD_REQUEST,
                    format!("Failed to serialize request: {}", e),
                )
                    .into_response();
            }
        };

998
        // Remove SGLang-specific fields only
999
        if let Some(obj) = payload.as_object_mut() {
1000
            // Remove SGLang-specific fields (not part of OpenAI API)
1001
            obj.retain(|k, _| !SGLANG_FIELDS.contains(&k.as_str()));
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
            // XAI (Grok models) requires special handling of input items
            // Check if model is a Grok model
            let is_grok_model = obj
                .get("model")
                .and_then(|v| v.as_str())
                .map(|m| m.starts_with("grok"))
                .unwrap_or(false);

            if is_grok_model {
                // XAI doesn't support the OPENAI item type input: https://platform.openai.com/docs/api-reference/responses/create#responses-create-input-input-item-list-item
                // To Achieve XAI compatibility, strip extra fields from input messages (id, status)
                // XAI doesn't support output_text as type for content with role of assistant
                // so normalize content types: output_text -> input_text
                if let Some(input_arr) = obj.get_mut("input").and_then(Value::as_array_mut) {
                    for item_obj in input_arr.iter_mut().filter_map(Value::as_object_mut) {
                        // Remove fields not universally supported
                        item_obj.remove("id");
                        item_obj.remove("status");

                        // Normalize content types to input_text (xAI compatibility)
                        if let Some(content_arr) =
                            item_obj.get_mut("content").and_then(Value::as_array_mut)
                        {
                            for content_obj in
                                content_arr.iter_mut().filter_map(Value::as_object_mut)
1027
                            {
1028
1029
1030
1031
1032
1033
1034
1035
1036
                                // Change output_text to input_text
                                if content_obj.get("type").and_then(Value::as_str)
                                    == Some("output_text")
                                {
                                    content_obj.insert(
                                        "type".to_string(),
                                        Value::String("input_text".to_string()),
                                    );
                                }
1037
1038
1039
1040
1041
                            }
                        }
                    }
                }
            }
1042
1043
1044
        }

        // Delegate to streaming or non-streaming handler
1045
        if body.stream.unwrap_or(false) {
1046
1047
1048
            handle_streaming_response(
                &self.client,
                &self.circuit_breaker,
1049
                Some(&self.mcp_manager),
1050
1051
1052
1053
1054
1055
1056
1057
                self.response_storage.clone(),
                self.conversation_storage.clone(),
                self.conversation_item_storage.clone(),
                url,
                headers,
                payload,
                body,
                original_previous_response_id,
1058
                tool_context,
1059
1060
1061
1062
1063
1064
1065
1066
1067
            )
            .await
        } else {
            self.handle_non_streaming_response(
                url,
                headers,
                payload,
                body,
                original_previous_response_id,
1068
                tool_context,
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
            )
            .await
        }
    }

    async fn get_response(
        &self,
        _headers: Option<&HeaderMap>,
        response_id: &str,
        _params: &ResponsesGetParams,
    ) -> Response {
        let id = ResponseId::from(response_id);
        match self.response_storage.get_response(&id).await {
            Ok(Some(stored)) => {
                let mut response_json = stored.raw_response;
                if let Some(obj) = response_json.as_object_mut() {
                    obj.insert("id".to_string(), json!(id.0));
                }
                (StatusCode::OK, Json(response_json)).into_response()
            }
            Ok(None) => (
                StatusCode::NOT_FOUND,
                Json(json!({"error": "Response not found"})),
            )
                .into_response(),
            Err(e) => (
                StatusCode::INTERNAL_SERVER_ERROR,
1096
                Json(json!({ "error": format!("Failed to get response: {}", e) })),
1097
1098
1099
1100
1101
            )
                .into_response(),
        }
    }

1102
1103
1104
1105
1106
1107
    async fn cancel_response(&self, _headers: Option<&HeaderMap>, _response_id: &str) -> Response {
        (
            StatusCode::NOT_IMPLEMENTED,
            "Cancel response not implemented for OpenAI router",
        )
            .into_response()
1108
1109
    }

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    async fn list_response_input_items(
        &self,
        _headers: Option<&HeaderMap>,
        response_id: &str,
    ) -> Response {
        let resp_id = ResponseId::from(response_id);

        match self.response_storage.get_response(&resp_id).await {
            Ok(Some(stored)) => {
                // Extract items from input field (which is a JSON array)
                let items = match &stored.input {
                    Value::Array(arr) => arr.clone(),
                    _ => vec![],
                };

                // Generate IDs for items if they don't have them
                let items_with_ids: Vec<Value> = items
                    .into_iter()
                    .map(|mut item| {
                        if item.get("id").is_none() {
                            // Generate ID if not present using centralized utility
                            if let Some(obj) = item.as_object_mut() {
1132
                                obj.insert("id".to_string(), json!(generate_id("msg")));
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
                            }
                        }
                        item
                    })
                    .collect();

                let response_body = json!({
                    "object": "list",
                    "data": items_with_ids,
                    "first_id": items_with_ids.first().and_then(|v| v.get("id").and_then(|i| i.as_str())),
                    "last_id": items_with_ids.last().and_then(|v| v.get("id").and_then(|i| i.as_str())),
                    "has_more": false
                });

                (StatusCode::OK, Json(response_body)).into_response()
            }
            Ok(None) => (
                StatusCode::NOT_FOUND,
                Json(json!({
                    "error": {
                        "message": format!("No response found with id '{}'", response_id),
                        "type": "invalid_request_error",
                        "param": Value::Null,
                        "code": "not_found"
                    }
                })),
            )
                .into_response(),
            Err(e) => {
                warn!("Failed to retrieve input items for {}: {}", response_id, e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(json!({
                        "error": {
                            "message": format!("Failed to retrieve input items: {}", e),
                            "type": "internal_error",
                            "param": Value::Null,
                            "code": "storage_error"
                        }
                    })),
                )
                    .into_response()
            }
        }
    }

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
    async fn route_embeddings(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &EmbeddingRequest,
        _model_id: Option<&str>,
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED, "Embeddings not supported").into_response()
    }

    async fn route_rerank(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &RerankRequest,
        _model_id: Option<&str>,
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED, "Rerank not supported").into_response()
    }

1197
1198
1199
1200
1201
1202
1203
1204
1205
    async fn route_classify(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &ClassifyRequest,
        _model_id: Option<&str>,
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED, "Classify not supported").into_response()
    }

1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
    async fn create_conversation(&self, _headers: Option<&HeaderMap>, body: &Value) -> Response {
        create_conversation(&self.conversation_storage, body.clone()).await
    }

    async fn get_conversation(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
    ) -> Response {
        get_conversation(&self.conversation_storage, conversation_id).await
    }

    async fn update_conversation(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        body: &Value,
    ) -> Response {
        update_conversation(&self.conversation_storage, conversation_id, body.clone()).await
    }

    async fn delete_conversation(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
    ) -> Response {
        delete_conversation(&self.conversation_storage, conversation_id).await
    }

    fn router_type(&self) -> &'static str {
        "openai"
    }

    async fn list_conversation_items(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        limit: Option<usize>,
        order: Option<String>,
        after: Option<String>,
    ) -> Response {
        let mut query_params = std::collections::HashMap::new();
        query_params.insert("limit".to_string(), limit.unwrap_or(100).to_string());
        if let Some(after_val) = after {
            if !after_val.is_empty() {
                query_params.insert("after".to_string(), after_val);
            }
        }
        if let Some(order_val) = order {
            query_params.insert("order".to_string(), order_val);
        }

        list_conversation_items(
            &self.conversation_storage,
            &self.conversation_item_storage,
            conversation_id,
            query_params,
        )
        .await
    }
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312

    async fn create_conversation_items(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        body: &Value,
    ) -> Response {
        create_conversation_items(
            &self.conversation_storage,
            &self.conversation_item_storage,
            conversation_id,
            body.clone(),
        )
        .await
    }

    async fn get_conversation_item(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        item_id: &str,
        include: Option<Vec<String>>,
    ) -> Response {
        get_conversation_item(
            &self.conversation_storage,
            &self.conversation_item_storage,
            conversation_id,
            item_id,
            include,
        )
        .await
    }

    async fn delete_conversation_item(
        &self,
        _headers: Option<&HeaderMap>,
        conversation_id: &str,
        item_id: &str,
    ) -> Response {
        delete_conversation_item(
            &self.conversation_storage,
            &self.conversation_item_storage,
            conversation_id,
            item_id,
        )
        .await
    }
1313
}