update.py 8.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
Usage:
1) Launch the server with wait-for-initial-weights option in one terminal:
   python -m sglang.launch_server --model-path /workspace/Qwen/Qwen3-4B/ --tensor-parallel-size 2 --port 19730 --load-format dummy --checkpoint-engine-wait-weights-before-ready --mem-fraction-static 0.7

2) Torchrun this script in another terminal:
    torchrun --nproc-per-node 2 update.py --update-method broadcast --checkpoint-path /workspace/Qwen/Qwen3-4B/  --inference-parallel-size 2
"""

import argparse
import json
import os
import pickle
import time
from collections import defaultdict
from collections.abc import Callable
from contextlib import contextmanager
from typing import Literal

import httpx
import torch
import torch.distributed as dist
from checkpoint_engine.ps import ParameterServer
from loguru import logger
from safetensors import safe_open


@contextmanager
def timer(msg: str):
    start = time.perf_counter()
    yield
    end = time.perf_counter()
    logger.info(f"{msg} duration: {end - start:.2f} seconds")


def check_sglang_ready(
    endpoint: str, inference_parallel_size: int, uds: str | None = None
):
    if rank != rank // inference_parallel_size * inference_parallel_size:
        return
    retry_num = 0
    transport = None
    if uds is not None:
        transport = httpx.HTTPTransport(uds=uds)
    with httpx.Client(transport=transport) as client:
        while True:
            try:
                response = client.get(f"{endpoint}/ping", timeout=10)
                response.raise_for_status()
                break
            except (httpx.ConnectError, httpx.HTTPStatusError) as e:
                if retry_num % 10 == 0:
                    logger.warning(
                        f"fail to check sglang ready, retry {retry_num} times, error: {e}"
                    )
                retry_num += 1
                time.sleep(0.1)


def split_checkpoint_files(
    checkpoint_path: str, rank: int, world_size: int
) -> list[str]:
    checkpoint_files = [
        os.path.join(checkpoint_path, f)
        for f in filter(
            lambda x: x.endswith(".safetensors"), os.listdir(checkpoint_path)
        )
    ]
    files_per_rank = (len(checkpoint_files) + world_size - 1) // world_size
    return checkpoint_files[rank * files_per_rank : (rank + 1) * files_per_rank]


def split_tensors(
    checkpoint_path: str, rank: int, world_size: int
) -> dict[str, torch.Tensor]:
    index_fn = os.path.join(checkpoint_path, "model.safetensors.index.json")
    with open(index_fn) as f:
        weight_map: dict[str, str] = json.load(f)["weight_map"]
    weights_per_rank = (len(weight_map) + world_size - 1) // world_size
    fn_tensors: dict[str, list[str]] = defaultdict(list)
    weight_keys = list(weight_map.items())
    for name, file in weight_keys[
        rank * weights_per_rank : (rank + 1) * weights_per_rank
    ]:
        fn_tensors[file].append(name)
    named_tensors = {}
    for file, names in fn_tensors.items():
        with safe_open(os.path.join(checkpoint_path, file), framework="pt") as f:
            for name in names:
                named_tensors[name] = f.get_tensor(name)
    return named_tensors


def req_inference(
    endpoint: str,
    inference_parallel_size: int,
    timeout: float = 300.0,
    uds: str | None = None,
    weight_version: str | None = None,
) -> Callable[[list[tuple[str, str]]], None]:
    rank = int(os.getenv("RANK", 0))
    src = rank // inference_parallel_size * inference_parallel_size

    def req_func(socket_paths: list[tuple[str, str]]):
        if rank == src:
            with httpx.Client(transport=httpx.HTTPTransport(uds=uds)) as client:
                resp = client.post(
                    f"{endpoint}/update_weights_from_ipc",
                    json={
                        "zmq_handles": dict(
                            socket_paths[src : src + inference_parallel_size]
                        ),
                        "flush_cache": True,
                        "weight_version": weight_version,
                    },
                    timeout=timeout,
                )
                resp.raise_for_status()

    return req_func


def update_weights(
    ps: ParameterServer,
    checkpoint_name: str,
    checkpoint_files: list[str],
    named_tensors: dict[str, torch.Tensor],
    req_func: Callable[[list[tuple[str, str]]], None],
    inference_parallel_size: int,
    endpoint: str,
    save_metas_file: str | None = None,
    update_method: Literal["broadcast", "p2p", "all"] = "broadcast",
    uds: str | None = None,
):
    ps.register_checkpoint(
        checkpoint_name, files=checkpoint_files, named_tensors=named_tensors
    )
    ps.init_process_group()
    check_sglang_ready(endpoint, inference_parallel_size, uds)
    dist.barrier()
    with timer("Gather metas"):
        ps.gather_metas(checkpoint_name)
    if save_metas_file and int(os.getenv("RANK")) == 0:
        with open(save_metas_file, "wb") as f:
            pickle.dump(ps.get_metas(), f)

    if update_method == "broadcast" or update_method == "all":
        with timer("Update weights without setting ranks"):
            ps.update(checkpoint_name, req_func)

    if update_method == "p2p" or update_method == "all":
        if update_method:
            # sleep 2s to wait destroy process group
            time.sleep(2)
        with timer("Update weights with setting ranks"):
            ps.update(
                checkpoint_name, req_func, ranks=list(range(inference_parallel_size))
            )


def join(
    ps: ParameterServer,
    checkpoint_name: str,
    load_metas_file: str,
    req_func: Callable[[list[tuple[str, str]]], None],
    inference_parallel_size: int,
    endpoint: str,
    uds: str | None = None,
):
    assert load_metas_file, "load_metas_file is required"
    with open(load_metas_file, "rb") as f:
        metas = pickle.load(f)
    ps.init_process_group()
    check_sglang_ready(endpoint, inference_parallel_size, uds)
    dist.barrier()
    with timer("Gather metas before join"):
        ps.gather_metas(checkpoint_name)
    ps.load_metas(metas)
    with timer(
        f"Update weights with setting ranks as range(0, {inference_parallel_size}) by using p2p"
    ):
        ps.update(checkpoint_name, req_func, ranks=list(range(inference_parallel_size)))


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Update weights example")
    parser.add_argument("--checkpoint-path", type=str, default=None)
    parser.add_argument("--save-metas-file", type=str, default=None)
    parser.add_argument("--load-metas-file", type=str, default=None)
    parser.add_argument("--sleep-time", type=int, default=0)
    parser.add_argument("--endpoint", type=str, default="http://localhost:19730")
    parser.add_argument("--inference-parallel-size", type=int, default=8)
    parser.add_argument("--checkpoint-name", type=str, default="my-checkpoint-iter-0")
    parser.add_argument("--update-method", type=str, default="broadcast")
    parser.add_argument("--uds", type=str, default=None)
    parser.add_argument("--weight-version", type=str, default=None)
    args = parser.parse_args()
    rank = int(os.getenv("RANK"))
    world_size = int(os.getenv("WORLD_SIZE"))
    req_func = req_inference(
        args.endpoint,
        args.inference_parallel_size,
        uds=args.uds,
        weight_version=args.weight_version,
    )
    ps = ParameterServer(auto_pg=True)
    ps._p2p_store = None
    if args.load_metas_file:
        join(
            ps,
            args.checkpoint_name,
            args.load_metas_file,
            req_func,
            args.inference_parallel_size,
            args.endpoint,
            args.uds,
        )
    else:
        if os.path.exists(
            os.path.join(args.checkpoint_path, "model.safetensors.index.json")
        ):
            named_tensors = split_tensors(args.checkpoint_path, rank, world_size)
            checkpoint_files = []
        else:
            checkpoint_files = split_checkpoint_files(
                args.checkpoint_path, rank, world_size
            )
            named_tensors = {}
        update_weights(
            ps,
            args.checkpoint_name,
            checkpoint_files,
            named_tensors,
            req_func,
            args.inference_parallel_size,
            args.endpoint,
            args.save_metas_file,
            args.update_method,
            args.uds,
        )
    time.sleep(args.sleep_time)