cudaFp8Utils.h 5.81 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
 * Copyright (c) 2022-2024, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#ifdef ENABLE_FP8
#include <cuda_fp8.h>
#include <cuda_runtime.h>
#include <stdint.h>

#define FP8_MHA
#define FUSE_GEMM_ACT
#define FP8_GEMM_OUTPUT_QUANT_DISABLE

#ifdef FUSE_GEMM_ACT
#define USE_QGMMA
#endif

namespace tensorrt_llm
{
namespace common
{

constexpr float FP8_E4M3_MAX = 448.0f;

enum QuantizeMode
{
    PER_CHANNEL,
    PER_TENSOR,
    PER_CHANNEL_WEIGHT_PER_TENSOR_ACT,
    PER_TOKEN,
};

// Packed Data Type
typedef struct __CUDA_ALIGN__(32)
{
    float array[8];
} float8;

typedef struct __CUDA_ALIGN__(16)
{
    half array[8];
} half8;

typedef struct __CUDA_ALIGN__(8)
{
    half2 array[2];
} half2_2;

typedef struct __CUDA_ALIGN__(8)
{
    half array[4];
} half_4;

#ifdef ENABLE_BF16
typedef struct __CUDA_ALIGN__(4)
{
    __nv_bfloat16 array[2];
} __nv_bfloat16_2;

typedef struct __CUDA_ALIGN__(8)
{
    __nv_bfloat162 x, y;
} __nv_bfloat162_2_xy;

typedef struct __CUDA_ALIGN__(8)
{
    __nv_bfloat16 array[4];
} __nv_bfloat164;

typedef struct __CUDA_ALIGN__(8)
{
    __nv_bfloat162 array[2];
} __nv_bfloat162_2;

typedef struct __CUDA_ALIGN__(16)
{
    __nv_bfloat16 array[8];
} __nv_bfloat168;

typedef struct __CUDA_ALIGN__(16)
{
    __nv_bfloat162 array[4];
} __nv_bfloat162_4;

typedef struct __CUDA_ALIGN__(32)
{
    __nv_bfloat16 array[16];
} __nv_bfloat1616;
#endif

#ifdef ENABLE_FP8
typedef struct __CUDA_ALIGN__(2)
{
    __nv_fp8_e4m3 array[2];
} __nv_fp8_2_e4m3;

typedef struct __CUDA_ALIGN__(4)
{
    __nv_fp8_e4m3 array[4];
} __nv_fp8_4_e4m3;

typedef struct __CUDA_ALIGN__(4)
{
    __nv_fp8x2_e4m3 array[2];
} __nv_fp8x2_x2_e4m3;

typedef struct __CUDA_ALIGN__(8)
{
    __nv_fp8_e4m3 array[8];
} __nv_fp8_8_e4m3;

typedef struct __CUDA_ALIGN__(8)
{
    __nv_fp8x2_e4m3 array[4];
} __nv_fp8x2_x4_e4m3;

typedef struct __CUDA_ALIGN__(16)
{
    __nv_fp8_e4m3 array[16];
} __nv_fp8x16_e4m3;
#endif

// only BF16 and FP8
template <typename T, int PACK_SIZE>
struct PackType
{
    using type = float;
};

#ifdef ENABLE_BF16
template <>
struct PackType<__nv_bfloat16, 2>
{
    using type = __nv_bfloat16_2;
};

template <>
struct PackType<__nv_bfloat16, 4>
{
    using type = __nv_bfloat164;
};

template <>
struct PackType<__nv_bfloat16, 8>
{
    using type = __nv_bfloat168;
};
#endif

#ifdef ENABLE_FP8
template <>
struct PackType<__nv_fp8_e4m3, 2>
{
    using type = __nv_fp8_2_e4m3;
};

template <>
struct PackType<__nv_fp8_e4m3, 4>
{
    using type = __nv_fp8_4_e4m3;
};

template <>
struct PackType<__nv_fp8_e4m3, 8>
{
    using type = __nv_fp8_8_e4m3;
};
#endif

__inline__ __device__ void fp8x4_e4m3_to_bfloat2(__nv_bfloat162* out1, __nv_bfloat162* out2, __nv_fp8x4_e4m3 const* in)
{
    const char4 tmp_val = reinterpret_cast<char4 const*>(in)[0];
    *out1 = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
        (float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
    *out2 = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.z)[0],
        (float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.w)[0]);
}

__inline__ __device__ __nv_bfloat162 fp8x2_e4m3_to_bfloat2(__nv_fp8x2_e4m3 const* in)
{
    const char2 tmp_val = reinterpret_cast<char2 const*>(in)[0];
    __nv_bfloat162 out = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
        (float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
    return out;
}

__inline__ __device__ void fp8x4_e4m3_to_half2(half2* out1, half2* out2, __nv_fp8x4_e4m3 const* in)
{
    const char4 tmp_val = reinterpret_cast<char4 const*>(in)[0];
    *out1 = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
        (float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
    *out2 = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.z)[0],
        (float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.w)[0]);
}

__inline__ __device__ half2 fp8x2_e4m3_to_half2(__nv_fp8x2_e4m3 const* in)
{
    const char2 tmp_val = reinterpret_cast<char2 const*>(in)[0];
    half2 out = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
        (float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
    return out;
}

template <typename T_OUT, typename T_S, typename T_IN>
void invokeQuantizeMatrix(T_OUT* output, T_S const* input_qua_amax_ptr, T_IN const* input, int64_t numel, int64_t lda,
    QuantizeMode quantize_mode, cudaStream_t stream);

template <typename T_OUT, typename T_S, typename T_IN>
void invokeDequantizeMatrix(T_OUT* output, T_S const* input_qua_amax_ptr, T_IN const* input, int64_t numel, int64_t lda,
    QuantizeMode quantize_mode, cudaStream_t stream);

template <typename T_FAKE, typename T_OUT, typename T_IN>
void invokeFakeQuantize(T_OUT* dst, const T_IN* src, const int64_t numel, cudaStream_t stream);

template <typename T_S, typename T_W>
void invokeComputeFP8QuantizeScale(T_S* quant_ptr, const T_W* weights, const int64_t k, const int64_t lda,
    QuantizeMode quantize_mode, cudaStream_t stream);

template <typename T_OUT, typename T_S, typename T_IN>
void invokeComputeScalesAndQuantizeMatrix(T_OUT* output, T_S* quant_ptr, const T_IN* weights, const int64_t numel,
    const int64_t lda, QuantizeMode quantize_mode, cudaStream_t stream);

} // namespace common
} // namespace tensorrt_llm
#endif // ENABLE_FP8