bench_other.py 6.87 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
import argparse
import ast
import json
import re
import time
Liangsheng Yin's avatar
Liangsheng Yin committed
6
7
8
from collections import Counter
from concurrent.futures import ThreadPoolExecutor
from functools import partial
Lianmin Zheng's avatar
Lianmin Zheng committed
9
10
11
12

import numpy as np
from tqdm import tqdm

Liangsheng Yin's avatar
Liangsheng Yin committed
13
14
15
16
17
18
19
from sglang.test.test_utils import (
    add_common_other_args_and_parse,
    call_generate_lightllm,
    call_generate_srt_raw,
    call_generate_vllm,
)
from sglang.utils import dump_state_text, read_jsonl
Lianmin Zheng's avatar
Lianmin Zheng committed
20
21
22
23
24
25

INVALID = -9999999


def get_answer_value(answer_str):
    answer_str = answer_str.replace(",", "")
Liangsheng Yin's avatar
Liangsheng Yin committed
26
    numbers = re.findall(r"\d+", answer_str)
Lianmin Zheng's avatar
Lianmin Zheng committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
    if len(numbers) < 1:
        return INVALID
    try:
        return ast.literal_eval(numbers[-1])
    except SyntaxError:
        return INVALID


def most_frequent_number(numbers):
    if not numbers:
        return None

    frequency = Counter(numbers)
    most_frequent = max(frequency, key=frequency.get)
    return most_frequent


USER_PREFIX = "[INST] "
USER_SUFFIX = " [/INST]"
ASSISTANT_PREFIX = ""
ASSISTANT_SUFFIX = " </s><s>"

# Use a low temp to make the results more deterministic and the comparison more fair.
temp = 0.3


def propose_plan(s, question, num_branches, call_generate):
Liangsheng Yin's avatar
Liangsheng Yin committed
54
55
56
57
58
59
    s += (
        USER_PREFIX
        + """Please generate a high-level plan for solving the following question. As the first step, just say what method and idea you will use to solve the question. You can reorganize the information in the question. Do not do the actual calculation. Keep your response concise and within 80 words. Question: """
        + question
        + USER_SUFFIX
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
60
61

    s += ASSISTANT_PREFIX
Liangsheng Yin's avatar
Liangsheng Yin committed
62
63
64
    comps = call_generate(
        s, max_tokens=256, temperature=temp, stop=None, n=num_branches
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
65
66
67
68
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def execute_plan(s, num_branches, call_generate):
Liangsheng Yin's avatar
Liangsheng Yin committed
69
70
71
72
73
    s += (
        USER_PREFIX
        + """The plan looks good! Now, use real numbers and do the calculation. Please solve the question step-by-step according to the high-level plan. Give me the final answer. Make your response short."""
        + USER_SUFFIX
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
74
    s += ASSISTANT_PREFIX
Liangsheng Yin's avatar
Liangsheng Yin committed
75
76
77
    comps = call_generate(
        s, max_tokens=256, temperature=temp, stop=None, n=num_branches
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
78
79
80
81
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def reflect_solution(s, num_branches, call_generate):
Liangsheng Yin's avatar
Liangsheng Yin committed
82
83
84
85
86
    s += (
        USER_PREFIX
        + """Okay. Now you evaluate your own solution and give it a score on a scale of 1 to 5. Please do rigorous check of the correctness."""
        + USER_SUFFIX
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
87
    s += ASSISTANT_PREFIX
Liangsheng Yin's avatar
Liangsheng Yin committed
88
89
90
    comps = call_generate(
        s, max_tokens=256, temperature=temp, stop=None, n=num_branches
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    return [s + comp + ASSISTANT_SUFFIX for comp in comps]


def tree_search(question, num_branches, call_generate):
    s = ""
    solutions = []

    plan_forks = propose_plan(s, question, num_branches, call_generate)
    for plan in plan_forks:
        sol_forks = execute_plan(plan, num_branches, call_generate)
        for sol in sol_forks:
            score_forks = reflect_solution(sol, num_branches, call_generate)
        solutions.append(sol_forks)

    return solutions


def main(args):
    lines = read_jsonl(args.data_path)

    # Construct prompts
    num_branches = 3
    questions = []
    labels = []
Liangsheng Yin's avatar
Liangsheng Yin committed
115
    for i in range(len(lines[: args.num_questions])):
Lianmin Zheng's avatar
Lianmin Zheng committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        questions.append(lines[i]["question"])
        labels.append(get_answer_value(lines[i]["answer"]))
    assert all(l != INVALID for l in labels)
    arguments = [{"question": q, "num_branches": num_branches} for q in questions]

    # Select backend
    if args.backend == "lightllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_lightllm, url=url)
    elif args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_vllm, url=url)
    elif args.backend == "srt-raw":
        url = f"{args.host}:{args.port}/generate"
        call_generate = partial(call_generate_srt_raw, url=url)
    elif args.backend == "guidance":
Liangsheng Yin's avatar
Liangsheng Yin committed
132
        from guidance import gen, models
Lianmin Zheng's avatar
Lianmin Zheng committed
133

Liangsheng Yin's avatar
Liangsheng Yin committed
134
135
136
137
138
        model = models.LlamaCpp(
            "/home/ubuntu/model_weights/Llama-2-7b-chat.gguf",
            n_gpu_layers=-1,
            n_ctx=4096,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
139
140
141

        def call_generate(prompt, temperature, max_tokens, stop, n):
            if n == 1:
Liangsheng Yin's avatar
Liangsheng Yin committed
142
143
144
145
146
147
148
149
150
151
                out = (
                    model
                    + prompt
                    + gen(
                        name="answer",
                        max_tokens=max_tokens,
                        temperature=temperature,
                        stop=stop,
                    )
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
152
153
154
155
                return out["answer"]
            else:
                rets = []
                for i in range(n):
Liangsheng Yin's avatar
Liangsheng Yin committed
156
157
158
159
160
161
162
163
164
165
                    out = (
                        model
                        + prompt
                        + gen(
                            name="answer",
                            max_tokens=max_tokens,
                            temperature=temperature,
                            stop=stop,
                        )
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
166
167
168
169
170
                    rets.append(out["answer"])
                return rets

    # Run requests
    states = [None] * len(questions)
Liangsheng Yin's avatar
Liangsheng Yin committed
171

Lianmin Zheng's avatar
Lianmin Zheng committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def get_one_answer(i):
        states[i] = tree_search(**arguments[i], call_generate=call_generate)

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(questions))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            executor.map(get_one_answer, list(range(len(questions))))
    latency = time.time() - tic

    answers_text = []
    for s in states:
        answers_text.append([x for xs in s for x in xs])

    preds = []
    for i in range(len(states)):
        answers = [get_answer_value(v) for v in answers_text[i]]
        preds.append(most_frequent_number(answers))

    # Compute accuracy
    acc = np.mean(np.array(preds) == np.array(labels))
    invalid = np.mean(np.array(preds) == INVALID)
    print(f"Latency: {latency:.3f}")
    print(f"Invalid: {invalid:.3f}")
    print(f"Accuracy: {acc:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", answers_text)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "tree_of_thought_gsm8k",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "accuracy": round(acc, 3),
            "num_requests": args.num_questions,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
Liangsheng Yin's avatar
Liangsheng Yin committed
214
            },
Lianmin Zheng's avatar
Lianmin Zheng committed
215
216
217
218
219
220
221
222
223
224
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="test.jsonl")
    parser.add_argument("--num-questions", type=int, default=200)
    args = add_common_other_args_and_parse(parser)
    main(args)