bench_sglang.py 5.05 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
4
5
import argparse
import ast
import json
import re
import time
Liangsheng Yin's avatar
Liangsheng Yin committed
6
from collections import Counter
Lianmin Zheng's avatar
Lianmin Zheng committed
7
8
9

import numpy as np

Liangsheng Yin's avatar
Liangsheng Yin committed
10
11
12
13
14
15
import sglang as sgl
from sglang.test.test_utils import (
    add_common_sglang_args_and_parse,
    select_sglang_backend,
)
from sglang.utils import dump_state_text, read_jsonl
Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
18
19
20
21

INVALID = -9999999


def get_answer_value(answer_str):
    answer_str = answer_str.replace(",", "")
Liangsheng Yin's avatar
Liangsheng Yin committed
22
    numbers = re.findall(r"\d+", answer_str)
Lianmin Zheng's avatar
Lianmin Zheng committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    if len(numbers) < 1:
        return INVALID
    try:
        return ast.literal_eval(numbers[-1])
    except SyntaxError:
        return INVALID


def most_frequent_number(numbers):
    if not numbers:
        return None

    frequency = Counter(numbers)
    most_frequent = max(frequency, key=frequency.get)
    return most_frequent


# Use a low temp to make the results more deterministic and the comparison more fair.
temp = 0.001


def propose_plan(s, question, num_branches):
    s += sgl.user(
Liangsheng Yin's avatar
Liangsheng Yin committed
46
47
48
        """Please generate a high-level plan for solving the following question. As the first step, just say what method and idea you will use to solve the question. You can reorganize the information in the question. Do not do the actual calculation. Keep your response concise and within 80 words. Question: """
        + question
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
49
50
51
52
53
54
55
    forks = s.fork(num_branches)
    forks += sgl.assistant(sgl.gen("plan", max_tokens=256, temperature=temp))
    return forks


def execute_plan(s, num_branches):
    s += sgl.user(
Liangsheng Yin's avatar
Liangsheng Yin committed
56
57
        """The plan looks good! Now, use real numbers and do the calculation. Please solve the question step-by-step according to the high-level plan. Give me the final answer. Make your response short."""
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
58
59
60
61
62
63
64
    forks = s.fork(num_branches)
    forks += sgl.assistant(sgl.gen("answer", max_tokens=256, temperature=temp))
    return forks


def reflect_solution(s, num_branches):
    s += sgl.user(
Liangsheng Yin's avatar
Liangsheng Yin committed
65
66
        """Okay. Now, evaluate your own solution and give it a score on a scale of 1 to 5. Please do rigorous check of the correctness."""
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
69
70
71
72
73
    forks = s.fork(num_branches)
    forks += sgl.assistant(sgl.gen("score", max_tokens=256, temperature=temp))
    return forks


def get_final_answer(s, num_branches):
    s += sgl.user(
Liangsheng Yin's avatar
Liangsheng Yin committed
74
75
        """Based on your reflection, do you change your mind? Now, give me the final answer after careful consideration."""
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    forks = s.fork(num_branches)
    forks += sgl.assistant(sgl.gen("final_answer", max_tokens=256, temperature=temp))
    return forks


@sgl.function
def tree_search(s, question, num_branches):
    plan_forks = propose_plan(s, question, num_branches)

    sol_states = []
    for plan in plan_forks:
        forks = execute_plan(plan, num_branches)
        sol_states.extend(forks)

    ref_states = []
    for sol in sol_states:
        forks = reflect_solution(sol, num_branches)
        ref_states.extend(forks)

    solutions = []
    for sol in ref_states:
        forks = get_final_answer(sol, num_branches)
        solutions.append(forks)
    solutions = [[s.text() for s in forks] for forks in solutions]

    return solutions

Liangsheng Yin's avatar
Liangsheng Yin committed
103

Lianmin Zheng's avatar
Lianmin Zheng committed
104
105
106
107
108
109
110
def main(args):
    lines = read_jsonl(args.data_path)

    # Construct prompts
    num_branches = 2
    questions = []
    labels = []
Liangsheng Yin's avatar
Liangsheng Yin committed
111
    for i in range(len(lines[: args.num_questions])):
Lianmin Zheng's avatar
Lianmin Zheng committed
112
113
114
115
116
117
118
119
120
121
122
        questions.append(lines[i]["question"])
        labels.append(get_answer_value(lines[i]["answer"]))
    assert all(l != INVALID for l in labels)
    arguments = [{"question": q, "num_branches": num_branches} for q in questions]

    # Select backend
    backend = select_sglang_backend(args)

    # Run requests
    tic = time.time()
    states = tree_search.run_batch(
Liangsheng Yin's avatar
Liangsheng Yin committed
123
124
125
126
127
128
        arguments,
        temperature=0,
        backend=backend,
        num_threads=args.parallel,
        progress_bar=True,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    latency = time.time() - tic
    answers_text = []
    for s in states:
        answers_text.append([x for xs in s.ret_value for x in xs])

    preds = []
    for i in range(len(states)):
        answers = [get_answer_value(v) for v in answers_text[i]]
        preds.append(most_frequent_number(answers))

    # Compute accuracy
    acc = np.mean(np.array(preds) == np.array(labels))
    invalid = np.mean(np.array(preds) == INVALID)
    print(f"Latency: {latency:.3f}")
    print(f"Invalid: {invalid:.3f}")
    print(f"Accuracy: {acc:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", answers_text)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "tree_of_thought_gsm8k",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "accuracy": round(acc, 3),
            "num_requests": args.num_questions,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
Liangsheng Yin's avatar
Liangsheng Yin committed
160
            },
Lianmin Zheng's avatar
Lianmin Zheng committed
161
162
163
164
165
166
167
168
169
170
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="test.jsonl")
    parser.add_argument("--num-questions", type=int, default=200)
    args = add_common_sglang_args_and_parse(parser)
    main(args)