"lm_eval/models/utils.py" did not exist on "ff739414af28f4ddb3887687b28af63cc71af08a"
bench_other.py 3.84 KB
Newer Older
1
2
3
4
5
6
import json
import time
from argparse import ArgumentParser
from concurrent.futures import ThreadPoolExecutor

import requests
Liangsheng Yin's avatar
Liangsheng Yin committed
7
from data_gen import gen_arguments
8
9
10
from tqdm import tqdm
from vllm.transformers_utils.tokenizer import get_tokenizer

Liangsheng Yin's avatar
Liangsheng Yin committed
11
12
from sglang.test.test_utils import add_common_other_args_and_parse
from sglang.utils import dump_state_text
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63


def get_generate(args):
    # Select backend
    if args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"

        def generate(prompt, max_tokens, stop=None, temperature=0, url=url, n=1):
            data = {
                "prompt": prompt,
                "temperature": temperature,
                "max_tokens": max_tokens,
                "ignore_eos": True,
                "stop": stop,
                "stream": False,
                "n": n,
            }
            res = requests.post(url, json=data)
            assert res.status_code == 200
            return res.json()["text"][0][len(prompt) :]

    elif args.backend == "guidance":
        from guidance import gen, models

        model = models.LlamaCpp(
            "/home/ubuntu/model_weights/Llama-2-7b-chat-hf/ggml-model-f16.gguf",
            n_gpu_layers=-1,
            n_ctx=4096,
        )

        def generate(prompt, max_tokens, stop=None):
            out = (
                model
                + prompt
                + gen(name="answer", max_tokens=max_tokens, temperature=0, stop=stop)
            )
            return out["answer"]

        # warmup
        for _ in range(3):
            generate("Hello!" * 10, max_tokens=64, stop=None)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    return generate


def multi_turns(generate, qas):
    s = ""
    for qa in qas:
        s += qa["prompt"]
Liangsheng Yin's avatar
Liangsheng Yin committed
64
        s += generate(s, max_tokens=qa["new_tokens"])
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

    return s


def main(args):
    print(args)

    tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)

    multi_qas = gen_arguments(args, tokenizer)

    states = [None] * args.num_qa

    generate = get_generate(args)

    def get_one_answer(i):
        states[i] = multi_turns(generate=generate, **multi_qas[i])

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(multi_qas))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            rets = executor.map(get_one_answer, list(range(len(multi_qas))))
            for _ in rets:
                pass

    latency = time.time() - tic

    # Compute accuracy
    print(f"Latency: {latency:.3f}")

    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
Lianmin Zheng's avatar
Lianmin Zheng committed
102
            "task": "multi_turn_chat",
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "num_requests": args.num_qa,
            "num_turns": args.turns,
            "other": {
                "parallel": args.parallel,
                "output_mode": "long" if args.long else "short",
            },
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--turns", type=int, default=4)
    parser.add_argument("--num-qa", type=int, default=20)
    parser.add_argument("--min-len-q", type=int, default=256)
    parser.add_argument("--max-len-q", type=int, default=512)
    parser.add_argument("--min-len-a", type=int, default=4)
    parser.add_argument("--max-len-a", type=int, default=8)
    parser.add_argument("--tokenizer", type=str, required=True)
    parser.add_argument("--trust-remote-code", action="store_true")
    parser.add_argument("--long", action="store_true")
    args = add_common_other_args_and_parse(parser)

    if args.long:
        args.min_len_a = 256
        args.max_len_a = 512
        args.num_qa = 20
    main(args)