bench_other.py 3.59 KB
Newer Older
Lianmin Zheng's avatar
Lianmin Zheng committed
1
2
3
import argparse
import json
import time
Liangsheng Yin's avatar
Liangsheng Yin committed
4
5
from concurrent.futures import ThreadPoolExecutor
from functools import partial
Lianmin Zheng's avatar
Lianmin Zheng committed
6
7

from tqdm import tqdm
Liangsheng Yin's avatar
Liangsheng Yin committed
8
9
10
11
12
13
14
15

from sglang.test.test_utils import (
    add_common_other_args_and_parse,
    call_generate_lightllm,
    call_generate_srt_raw,
    call_generate_vllm,
)
from sglang.utils import dump_state_text, read_jsonl
Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
18
19
20
21


def json_decode(document, generate):
    s = "Please extract the information of a city from the following wikipedia page.\n"
    s += "Page begin.\n" + document + "Page end.\n"
    s += "Here is the name, country, and symbol of the city in JSON format.\n"
Liangsheng Yin's avatar
Liangsheng Yin committed
22
    s += "{\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
23
24
25
26
27
28
29
30
    s += '  "name": "'
    s += generate(s, max_tokens=8, stop='"') + '",\n'
    s += '  "country": "'
    s += generate(s, max_tokens=8, stop='"') + '",\n'
    s += '  "air port code": "'
    s += generate(s, max_tokens=8, stop='"') + '",\n'
    s += '  "top 3 landmarks": "'
    s += generate(s, max_tokens=24, stop='"') + '",\n'
Liangsheng Yin's avatar
Liangsheng Yin committed
31
    s += "}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
32
33
34
35
36
37
    return s


def main(args):
    lines = read_jsonl(args.data_path)
    arguments = []
Liangsheng Yin's avatar
Liangsheng Yin committed
38
39
40
41
42
43
    for i in range(len(lines[: args.num_questions])):
        arguments.append(
            {
                "document": lines[i]["document"],
            }
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46
47
48
49
50
51
52
53
54
55
56
    states = [None] * len(arguments)

    # Select backend
    if args.backend == "lightllm":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_lightllm, url=url, temperature=0)
    elif args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_vllm, url=url, temperature=0)
    elif args.backend == "srt-raw":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_srt_raw, url=url, temperature=0)
    elif args.backend == "guidance":
Liangsheng Yin's avatar
Liangsheng Yin committed
57
        from guidance import gen, models
Lianmin Zheng's avatar
Lianmin Zheng committed
58

Liangsheng Yin's avatar
Liangsheng Yin committed
59
60
61
62
63
        model = models.LlamaCpp(
            "/home/ubuntu/model_weights/CodeLlama-7b-instruct-hf.gguf",
            n_gpu_layers=-1,
            n_ctx=11000,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
64
65

        def generate(prompt, max_tokens, stop):
Liangsheng Yin's avatar
Liangsheng Yin committed
66
67
68
69
70
            out = (
                model
                + prompt
                + gen(name="answer", max_tokens=max_tokens, temperature=0, stop=stop)
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            return out["answer"]

        # warmup
        generate("Hello!", max_tokens=8, stop=None)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    # Run requests
    def get_one_answer(i):
        states[i] = json_decode(generate=generate, **arguments[i])

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(arguments))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            executor.map(get_one_answer, list(range(len(arguments))))
    latency = time.time() - tic

    # Compute accuracy
    print(f"Latency: {latency:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
            "task": "long_json_decode",
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "num_requests": args.num_questions,
            "other": {
                "num_questions": args.num_questions,
                "parallel": args.parallel,
Liangsheng Yin's avatar
Liangsheng Yin committed
107
            },
Lianmin Zheng's avatar
Lianmin Zheng committed
108
109
110
111
112
113
114
115
116
117
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="questions.jsonl")
    parser.add_argument("--num-questions", type=int, default=100)
    args = add_common_other_args_and_parse(parser)
    main(args)