bench_other.py 8.09 KB
Newer Older
Liangsheng Yin's avatar
Liangsheng Yin committed
1
2
3
4
5
6
7
import argparse
import json
import time
from concurrent.futures import ThreadPoolExecutor
from functools import partial

import guidance
Liangsheng Yin's avatar
Liangsheng Yin committed
8
9
from tqdm import tqdm

Liangsheng Yin's avatar
Liangsheng Yin committed
10
11
12
13
from sglang.test.test_utils import (
    add_common_other_args_and_parse,
    call_generate_outlines,
)
14
from sglang.utils import dump_state_text, read_jsonl
Liangsheng Yin's avatar
Liangsheng Yin committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

# there are some FSM bugs with json regex converted from pydantic model
# here use a string regex instead
# regex_string = build_regex_from_object(HarryPoterRole)
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)

36
37
38
39
40
41
42
43
44
45
city_regex = (
    r"""\{\n"""
    + r"""  "name": "[\w\d\s]{1,16}",\n"""
    + r"""  "country": "[\w\d\s]{1,16}",\n"""
    + r"""  "latitude": [-+]?[0-9]*\.?[0-9]{0,2},\n"""
    + r"""  "population": [-+]?[0-9]{1,9},\n"""
    + r"""  "top 3 landmarks": \["[\w\d\s]{1,16}", "[\w\d\s]{1,16}", "[\w\d\s]{1,16}"\]\n"""
    + r"""\}"""
)

Liangsheng Yin's avatar
Liangsheng Yin committed
46
47
# fmt: off
def character_gen(name, generate):
48
    s = name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
Liangsheng Yin's avatar
Liangsheng Yin committed
49
50
51
52
    s += generate(s, max_tokens=256, regex=character_regex)
    return s
# fmt: on

53
54
55
56
57
58
59
60
61
# fmt: off
def city_gen(document, generate):
    s = "Please extract the information of a city from the following wikipedia page.\n"
    s += "Page begin.\n" + document + "Page end.\n"
    s += "Here is the name, country, and symbol of the city in JSON format.\n"
    s += generate(s, max_tokens=256, regex=city_regex)
    return s
# fmt: on

Liangsheng Yin's avatar
Liangsheng Yin committed
62
63
64
65
66
67

@guidance
def character_maker(lm, name):
    regex_str_no_quote = r"[\w\d\s]+"
    regex_float = r"[0-9]+\.[0-9]+"
    lm += f"""\
Lianmin Zheng's avatar
Lianmin Zheng committed
68
    {name} is a character in Harry Potter. Please fill in the following information about this character.
Liangsheng Yin's avatar
Liangsheng Yin committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    {{
        "name": "{guidance.gen("name", max_tokens=16, regex=regex_str_no_quote)}",
        "house": "{guidance.select(options=['Gryffindor', 'Slytherin', 'Ravenclaw', 'Hufflepuff'], name='house')}",
        "blood status": "{guidance.select(options=['Pure-blood', 'Half-blood', 'Muggle-born'], name='blood status')}",
        "occupation": "{guidance.select(options=['student', 'teacher', 'auror', 'ministry of magic', 'death eater', 'order of the phoenix'], name='occupation')}",
        "wand": {{
            "wood": "{guidance.gen("wood", max_tokens=16, regex=regex_str_no_quote)}",
            "core": "{guidance.gen('core', max_tokens=16, regex=regex_str_no_quote)}",
            "length": {guidance.gen('length', max_tokens=10, regex=regex_float)}
        }},
        "alive": "{guidance.select(options=['Alive', 'Deceased'], name='alive')}",
        "patronus": "{guidance.gen('patronus', max_tokens=16, regex=regex_str_no_quote)}",
        "bogart": "{guidance.gen('bogart', max_tokens=16, regex=regex_str_no_quote)}"
    }}
    """

    return lm


88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
@guidance
def city_maker(lm, document):
    regex_str_no_quote = r"[\w\d\s]+"
    regex_float = r"[0-9]+\.[0-9]+"
    lm += f"""\
    Please extract the information of a city from the following wikipedia page.
    Page begin.
    {document}
    Page end.
    Here is the name, country, and symbol of the city in JSON format.
    {{
        "name": "{guidance.gen("name", max_tokens=16, regex=regex_str_no_quote)}",
        "country": "{guidance.gen("country", max_tokens=16, regex=regex_str_no_quote)}",
        "latitude": {guidance.gen("latitude", max_tokens=10, regex=regex_float)},
        "population": {guidance.gen("population", max_tokens=10, regex=r"[0-9]+")},
        "top 3 landmarks": [
            "{guidance.gen("landmark1", max_tokens=16, regex=regex_str_no_quote)}", "{guidance.gen("landmark2", max_tokens=16, regex=regex_str_no_quote)}", "{guidance.gen("landmark3", max_tokens=16, regex=regex_str_no_quote)}"
        ]
    }}
    """

    return lm


def bench_character(args):
Liangsheng Yin's avatar
Liangsheng Yin committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    arguments = []
    with open(args.data_path, "r") as f:
        for line in f:
            arguments.append({"name": line.strip()})
    arguments = arguments[: args.num_jsons]

    states = [None] * len(arguments)

    # Select backend
    if args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_outlines, url=url, temperature=0)

        def func(i):
            states[i] = character_gen(**arguments[i], generate=generate)

        get_one_answer = func
    elif args.backend == "guidance":
        model = guidance.models.LlamaCpp(
132
            args.llama_cpp_model_path,
Liangsheng Yin's avatar
Liangsheng Yin committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
            n_gpu_layers=-1,
            n_ctx=4096,
        )

        def func(i):
            lm = model + character_maker(**arguments[i])
            states[i] = lm

        get_one_answer = func
    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(arguments))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            rets = executor.map(get_one_answer, list(range(len(arguments))))
            for _ in rets:
                pass

    latency = time.time() - tic

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    return states, latency


def bench_city_doc(args):
    arguments = []
    for line in read_jsonl(args.data_path):
        arguments.append({"document": line["document"]})
    arguments = arguments[: args.num_jsons]

    states = [None] * len(arguments)

    # Select backend
    if args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_outlines, url=url, temperature=0)

        def func(i):
            states[i] = city_gen(**arguments[i], generate=generate)

        get_one_answer = func
    elif args.backend == "guidance":
        model = guidance.models.LlamaCpp(
            args.llama_cpp_model_path,
            n_gpu_layers=-1,
            n_ctx=4096,
        )

        def func(i):
            lm = model + city_maker(**arguments[i])
            states[i] = lm

        get_one_answer = func
    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(arguments))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            rets = executor.map(get_one_answer, list(range(len(arguments))))
            for _ in rets:
                pass

    latency = time.time() - tic

    return states, latency


def main(args):
    if args.mode == "character":
        args.data_path = "dataset.txt"
        states, latency = bench_character(args)
    elif args.mode == "city":
        args.data_path = "questions.jsonl"
        states, latency = bench_city_doc(args)

Liangsheng Yin's avatar
Liangsheng Yin committed
215
216
217
218
    # Compute accuracy
    print(f"Latency: {latency:.3f}")

    # Write results
219
    dump_state_text(f"tmp_output_{args.backend}_{args.mode}.txt", states)
Liangsheng Yin's avatar
Liangsheng Yin committed
220
221
222

    with open(args.result_file, "a") as fout:
        value = {
Liangsheng Yin's avatar
Liangsheng Yin committed
223
            "task": "json_jump_forward",
Liangsheng Yin's avatar
Liangsheng Yin committed
224
225
226
            "backend": args.backend,
            "latency": round(latency, 3),
            "num_jsons": args.num_jsons,
hnyls2002's avatar
hnyls2002 committed
227
            "mode": args.mode,
Liangsheng Yin's avatar
Liangsheng Yin committed
228
229
230
231
232
233
234
            "parallel": args.parallel,
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
235
    parser.add_argument("--data-path", type=str)
Liangsheng Yin's avatar
Liangsheng Yin committed
236
    parser.add_argument("--num-jsons", type=int, default=50)
237
238
239
240
241
242
243
244
    parser.add_argument(
        "--mode", type=str, default="character", choices=["character", "city"]
    )
    parser.add_argument(
        "--llama-cpp-model-path",
        type=str,
        default="/home/ubuntu/model_weights/Llama-2-7b-chat-hf/ggml-model-f16.gguf",
    )
Liangsheng Yin's avatar
Liangsheng Yin committed
245
246
    args = add_common_other_args_and_parse(parser)
    main(args)