bench_other.py 3.7 KB
Newer Older
1
2
3
4
5
6
import argparse
import json
import time
from concurrent.futures import ThreadPoolExecutor
from functools import partial

Liangsheng Yin's avatar
Liangsheng Yin committed
7
8
9
from tqdm import tqdm

from sglang.lang.ir import REGEX_FLOAT, REGEX_INT, REGEX_STRING
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from sglang.test.test_utils import (
    add_common_other_args_and_parse,
    call_generate_outlines,
)
from sglang.utils import dump_state_text, read_jsonl

REGEX_LIST = r"\[(" + REGEX_STRING + ", )*" + REGEX_STRING + r"\]"


# fmt: off
def json_decode(document, generate):
    s = "Please extract the information of a city from the following wikipedia page.\n"
    s += "Page begin.\n" + document + "Page end.\n"
    s += "Here is the name, country, and symbol of the city in JSON format.\n"
    s += "{\n"
    s += '  "name": '
    s += generate(s, max_tokens=8, regex=REGEX_STRING + ",") + "\n"
    s += '  "country": '
    s += generate(s, max_tokens=8, regex=REGEX_STRING + ",") + "\n"
    s += '  "latitude": '
    s += generate(s, max_tokens=8, regex=REGEX_FLOAT + ",") + "\n"
    s += '  "population": '
    s += generate(s, max_tokens=8, regex=REGEX_INT + ",") + "\n"
    s += '  "top 3 landmarks": '
    s += generate(s, max_tokens=24, regex=REGEX_LIST) + "\n"
    s += "}\n"

    return s
# fmt: on


def main(args):
    lines = read_jsonl(args.data_path)
    arguments = []
    for i in range(len(lines[: args.num_questions])):
        arguments.append(
            {
                "document": lines[i]["document"],
            }
        )
    states = [None] * len(arguments)

    # Select backend
    if args.backend == "vllm":
        url = f"{args.host}:{args.port}/generate"
        generate = partial(call_generate_outlines, url=url, temperature=0)
    elif args.backend == "guidance":
        from guidance import gen, models

        model = models.LlamaCpp(
            "/home/ubuntu/model_weights/Llama-2-7b-chat-hf/ggml-model-f16.gguf",
            n_gpu_layers=-1,
            n_ctx=4096,
        )

        def generate(prompt, max_tokens, stop=None, regex=None):
            out = (
                model
                + prompt
                + gen(
                    name="answer",
                    max_tokens=max_tokens,
                    temperature=0,
                    stop=stop,
                    regex=regex,
                )
            )
            return out["answer"]

        # warmup
        for _ in range(3):
            generate("Hello!" * 10, max_tokens=64, stop=None)
    else:
        raise ValueError(f"Invalid backend: {args.backend}")

    # Run requests
    def get_one_answer(i):
        states[i] = json_decode(generate=generate, **arguments[i])

    tic = time.time()
    if args.parallel == 1:
        for i in tqdm(range(len(arguments))):
            get_one_answer(i)
    else:
        with ThreadPoolExecutor(args.parallel) as executor:
            rets = executor.map(get_one_answer, list(range(len(arguments))))
            for _ in rets:
                pass

    latency = time.time() - tic

    # Compute accuracy
    print(f"Latency: {latency:.3f}")

    # Write results
    dump_state_text(f"tmp_output_{args.backend}.txt", states)

    with open(args.result_file, "a") as fout:
        value = {
Lianmin Zheng's avatar
Lianmin Zheng committed
109
            "task": "json_decode_regex",
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
            "backend": args.backend,
            "num_gpus": 1,
            "latency": round(latency, 3),
            "num_requests": args.num_questions,
            "other": {
                "parallel": args.parallel,
            },
        }
        fout.write(json.dumps(value) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-path", type=str, default="questions.jsonl")
    parser.add_argument("--num-questions", type=int, default=20)
    args = add_common_other_args_and_parse(parser)
    main(args)