test_flash_attention_4.py 32.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
# Adapted from https://github.com/Dao-AILab/flash-attention/blob/b31ae1e4cd22cf5f820a2995b74b7cd3bd54355a/tests/cute/test_flash_attn.py

# Copyright (c) 2025, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.

import itertools
import math
from functools import partial

import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from sgl_kernel.flash_attn import flash_attn_varlen_func
from utils import is_hopper

flash_attn_varlen_func = partial(flash_attn_varlen_func, ver=4)


def unpad_input(hidden_states, attention_mask, unused_mask=None):
    """
    Arguments:
        hidden_states: (batch, seqlen, ...)
        attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
        unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused.
    Return:
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask.
        indices: (total_nnz), the indices of masked tokens from the flattened input sequence.
        cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
        max_seqlen_in_batch: int
        seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask.
    """
    all_masks = (
        (attention_mask + unused_mask) if unused_mask is not None else attention_mask
    )
    seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32)
    used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
    # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
    # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
    # index with integer indices.
    return (
        rearrange(hidden_states, "b s ... -> (b s) ...")[indices],
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
        used_seqlens_in_batch,
    )


def pad_input(hidden_states, indices, batch, seqlen):
    """
    Arguments:
        hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
        indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
        batch: int, batch size for the padded sequence.
        seqlen: int, maximum sequence length for the padded sequence.
    Return:
        hidden_states: (batch, seqlen, ...)
    """
    dim = hidden_states.shape[1:]
    output = torch.zeros(
        (batch * seqlen), *dim, device=hidden_states.device, dtype=hidden_states.dtype
    )
    output[indices] = hidden_states
    return rearrange(output, "(b s) ... -> b s ...", b=batch)


def generate_random_padding_mask(
    max_seqlen, batch_size, device, mode="random", zero_lengths=False
):
    assert mode in ["full", "random", "third"]
    if mode == "full":
        lengths = torch.full(
            (batch_size, 1), max_seqlen, device=device, dtype=torch.int32
        )
    elif mode == "random":
        lengths = torch.randint(
            max(0 if zero_lengths else 1, max_seqlen - 20),
            max_seqlen + 1,
            (batch_size, 1),
            device=device,
        )
    elif mode == "third":
        lengths = torch.randint(
            max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device
        )

    if zero_lengths:
        # Generate zero-lengths every 5 batches and the last batch.
        for i in range(batch_size):
            if i % 5 == 0:
                lengths[i] = 0
        lengths[-1] = 0
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size)
        < lengths
    )
    return padding_mask


def generate_qkv(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    qv=None,
    kvpacked=False,
    qkvpacked=False,
    query_unused_mask=None,
    key_unused_mask=None,
):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d_v)
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
    batch_size, seqlen_q, nheads, d = q.shape
    d_v = v.shape[-1]
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d_v)
    if query_unused_mask is not None or key_unused_mask is not None:
        assert not kvpacked
        assert not qkvpacked

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, seqused_q = unpad_input(
            q, query_padding_mask, query_unused_mask
        )
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
        qv_unpad = (
            rearrange(qv, "b s ... -> (b s) ...")[indices_q] if qv is not None else None
        )
    else:
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0,
            (batch_size + 1) * seqlen_q,
            step=seqlen_q,
            dtype=torch.int32,
            device=q_unpad.device,
        )
        seqused_q = None
        max_seqlen_q = seqlen_q
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )
        qv_unpad = rearrange(qv, "b s ... -> (b s) ...") if qv is not None else None

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, seqused_k = unpad_input(
            k, key_padding_mask, key_unused_mask
        )
        v_unpad, *rest = unpad_input(v, key_padding_mask, key_unused_mask)
    else:
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0,
            (batch_size + 1) * seqlen_k,
            step=seqlen_k,
            dtype=torch.int32,
            device=k_unpad.device,
        )
        seqused_k = None
        max_seqlen_k = seqlen_k

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
        assert nheads == nheads_k
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
        qkv = torch.stack([q, k, v], dim=2)
        if query_padding_mask is not None:
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(
                dqkv_unpad, indices_q, batch_size, seqlen_q
            )
        else:
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
        kv = torch.stack([k, v], dim=2)
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
            dkv_pad_fn = lambda dkv_unpad: pad_input(
                dkv_unpad, indices_k, batch_size, seqlen_k
            )
        else:
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
            dk_pad_fn = lambda dk_unpad: pad_input(
                dk_unpad, indices_k, batch_size, seqlen_k
            )
        else:
            dk_pad_fn = lambda dk_unpad: rearrange(
                dk_unpad, "(b s) h d -> b s h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            qv_unpad.detach() if qv is not None else None,
            cu_seqlens_q,
            cu_seqlens_k,
            seqused_q,
            seqused_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            qv.detach() if qv is not None else None,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )


def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(None, None),
    sink_token_length=0,
    query_padding_mask=None,
    key_padding_mask=None,
    key_leftpad=None,
    device=None,
):
    row_idx = rearrange(
        torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1"
    )
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    if key_leftpad is not None:
        key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
        col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
        col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    if window_size[0] is None:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            torch.logical_and(
                col_idx < row_idx + sk - sq - window_size[0],
                col_idx >= sink_token_length,
            ),
        )


def construct_chunk_mask(
    seqlen_q,
    seqlen_k,
    attention_chunk,
    query_padding_mask=None,
    key_padding_mask=None,
    key_leftpad=None,
    device=None,
):
    row_idx = rearrange(
        torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1"
    )
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    if key_leftpad is not None:
        key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
        col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
        col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
    # Subtract remainder instead of divide and then multiply to take care of negative values
    col_limit_left_chunk = row_idx + sk - sq - (row_idx + sk - sq) % attention_chunk
    return torch.logical_or(
        col_idx < col_limit_left_chunk,
        col_idx >= col_limit_left_chunk + attention_chunk,
    )


def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    key_leftpad=None,
    attn_bias=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    qv=None,
    q_descale=None,
    k_descale=None,
    v_descale=None,
    window_size=(None, None),
    attention_chunk=0,
    sink_token_length=0,
    learnable_sink=None,
    softcap=0.0,
    upcast=True,
    reorder_ops=False,
    intermediate_dtype=None,
):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k: (batch_size, seqlen_k, nheads, head_dim)
        v: (batch_size, seqlen_k, nheads, head_dim_v)
        qv: (batch_size, seqlen_q, nheads, head_dim_v)
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
        causal: whether to apply causal masking
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim_v)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
    if causal:
        window_size = (window_size[0], 0)
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
        qv = qv.float() if qv is not None else None
    if q_descale is not None:
        q_descale = repeat(q_descale, "b h -> b 1 (h g) 1", g=q.shape[2] // k.shape[2])
        q = (q.float() * q_descale).to(q.dtype)
        qv = (qv.float() * q_descale).to(qv.dtype) if qv is not None else None
    if k_descale is not None:
        k = (k.float() * rearrange(k_descale, "b h -> b 1 h 1")).to(dtype=k.dtype)
    if v_descale is not None:
        v = (v.float() * rearrange(v_descale, "b h -> b 1 h 1")).to(dtype=v.dtype)
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
    d = q.shape[-1]
    dv = v.shape[-1]
    softmax_scale = 1.0 / math.sqrt(d if qv is None else d + dv)
    if not reorder_ops:
        scores = torch.einsum("bthd,bshd->bhts", q * softmax_scale, k)
    else:
        scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
    if qv is not None:
        scores = scores + torch.einsum("bthd,bshd->bhts", qv * softmax_scale, v)
    if softcap > 0:
        scores = torch.tanh(scores / softcap) * softcap
    if key_padding_mask is not None:
        scores.masked_fill_(
            rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf")
        )
    local_mask = None
    if window_size[0] is not None or window_size[1] is not None:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            sink_token_length,
            query_padding_mask,
            key_padding_mask,
            key_leftpad=key_leftpad,
            device=q.device,
        )
    if attention_chunk > 0:
        chunk_mask = construct_chunk_mask(
            seqlen_q,
            seqlen_k,
            attention_chunk,
            query_padding_mask,
            key_padding_mask,
            key_leftpad=key_leftpad,
            device=q.device,
        )
        local_mask = (
            torch.logical_or(local_mask, chunk_mask)
            if local_mask is not None
            else chunk_mask
        )
    if local_mask is not None:
        scores.masked_fill_(local_mask, float("-inf"))
    if attn_bias is not None:
        scores = scores + attn_bias
    if learnable_sink is None:
        attention = torch.softmax(scores, dim=-1).to(v.dtype)
    else:
        scores_fp32 = scores.to(torch.float32)
        logits_max = torch.amax(scores_fp32, dim=-1, keepdim=True)
        learnable_sink = rearrange(learnable_sink, "h -> h 1 1")
        logits_or_sinks_max = torch.maximum(learnable_sink, logits_max)
        unnormalized_scores = torch.exp(scores_fp32 - logits_or_sinks_max)
        normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + torch.exp(
            learnable_sink - logits_or_sinks_max
        )
        attention = (unnormalized_scores / normalizer).to(v.dtype)
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(
            rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0
        )
    # Without this we might get NaN in dv
    if key_padding_mask is not None:
        attention = attention.masked_fill(
            rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0
        )
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if local_mask is not None:
        attention = attention.masked_fill(
            torch.all(local_mask, dim=-1, keepdim=True), 0.0
        )
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
    else:
        attention_drop = attention
    if intermediate_dtype is not None:
        attention_drop = attention_drop.to(intermediate_dtype).to(attention_drop.dtype)
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
    if query_padding_mask is not None:
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


@pytest.mark.skipif(
    is_hopper(),
    reason="skip on hopper",
)
# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
@pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
# @pytest.mark.parametrize("mha_type", ["mqa"])
@pytest.mark.parametrize("has_learnable_sink", [False, True])
# @pytest.mark.parametrize("has_learnable_sink", [False])
# @pytest.mark.parametrize("has_qv", [False, True])
@pytest.mark.parametrize("has_qv", [False])
# @pytest.mark.parametrize("deterministic", [False, True])
@pytest.mark.parametrize("deterministic", [False])
# @pytest.mark.parametrize("softcap", [0.0, 15.0])
@pytest.mark.parametrize("softcap", [0.0])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [False])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [False])
# @pytest.mark.parametrize("add_unused_qkv", [False, True])
@pytest.mark.parametrize("add_unused_qkv", [False])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128])
# @pytest.mark.parametrize("d", [64, 96, 128])
@pytest.mark.parametrize("d", [128, 192])
# @pytest.mark.parametrize("d", [192])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        # (1, 1),
        # (1, 3),
        # (2, 1),
        (511, 1),
        (3, 513),
        (64, 128),
        (128, 128),
        (256, 256),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (307, 256),
        (640, 128),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
def test_flash_attn_varlen_output(
    seqlen_q,
    seqlen_k,
    d,
    add_unused_qkv,
    causal,
    local,
    softcap,
    deterministic,
    has_qv,
    has_learnable_sink,
    mha_type,
    dtype,
):
    if (
        causal or local
    ):  # Right now we only support causal attention with seqlen_k == seqlen_q
        seqlen_k = seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(seqlen_q + seqlen_k + d + int(causal) * 2 + int(local))
    batch_size = 49 if seqlen_q <= 1024 else 7
    nheads = 6
    # batch_size = 1
    # nheads = 1
    nheads_kv = nheads if mha_type == "mha" else (3 if mha_type == "gqa" else 1)
    dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
    # dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d])
    dv_vals = [128] if d == 192 else ([d] if d != 128 else [64, d])
    if dtype == torch.float8_e4m3fn:
        dv_vals = [d]
    # attention_chunk_vals = [torch.randint(1, seqlen_k * 2, (1,)).item(), 0] if seqlen_q <= seqlen_k else [0]
    attention_chunk_vals = [0]
    for dv, attention_chunk in itertools.product(dv_vals, attention_chunk_vals):
        q_ref = torch.randn(
            batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref
        )
        if softcap > 0.0:
            # Ensure the values of qk are at least within softcap range.
            q_ref = (q_ref * softcap / 4).detach().requires_grad_()
        q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_()
        k_ref = (
            torch.randn(
                batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref
            )
            .to(dtype)
            .to(dtype_ref)
            .requires_grad_()
        )
        v_ref = (
            torch.randn(
                batch_size, seqlen_k, nheads_kv, dv, device=device, dtype=dtype_ref
            )
            .to(dtype)
            .to(dtype_ref)
            .requires_grad_()
        )
        if has_qv:
            qv_ref = (
                torch.randn(
                    batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref
                )
                .to(dtype)
                .to(dtype_ref)
            )
        else:
            qv_ref = None
        # Put window_size after QKV randn so that window_size changes from test to test
        window_size = (
            (None, None) if not local else torch.randint(0, seqlen_k, (2,)).tolist()
        )
        if has_learnable_sink:
            learnable_sink = torch.randn(nheads, dtype=torch.bfloat16, device=device)
        else:
            learnable_sink = None
        if dtype == torch.float8_e4m3fn:
            q_descale, k_descale, v_descale = [
                torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32)
                * 2
                for _ in range(3)
            ]
        else:
            q_descale, k_descale, v_descale = None, None, None
        q, k, v = [x.detach().requires_grad_() for x in (q_ref, k_ref, v_ref)]
        qv = qv_ref.detach() if has_qv else None
        query_padding_mask = generate_random_padding_mask(
            seqlen_q, batch_size, device, mode="random", zero_lengths=False
        )
        # TODO: test zero_lengths
        key_padding_mask = generate_random_padding_mask(
            # seqlen_k, batch_size, device, mode="random", zero_lengths=True
            seqlen_k,
            batch_size,
            device,
            mode="random",
            zero_lengths=False,
        )

        def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device):
            if add_unused:
                another_mask = generate_random_padding_mask(max_seq_len, bs, device)
                attn_mask = torch.logical_and(padding_mask, another_mask)
                unused_mask = torch.logical_xor(
                    torch.logical_or(padding_mask, another_mask), attn_mask
                )
            else:
                attn_mask = padding_mask
                unused_mask = None
            return attn_mask, unused_mask

        query_padding_mask, query_unused_mask = _gen_unused_masks(
            query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device
        )
        # query_padding_mask[:] = True
        # query_unused_mask = None
        key_padding_mask, key_unused_mask = _gen_unused_masks(
            key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device
        )

        if causal or local:
            key_padding_mask = query_padding_mask

        (
            q_unpad,
            k_unpad,
            v_unpad,
            qv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            seqused_q,
            seqused_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            qv,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
            qv=qv,
            kvpacked=False,
            query_unused_mask=query_unused_mask,
            key_unused_mask=key_unused_mask,
        )
        q_unpad, k_unpad, v_unpad = [
            x.detach().to(dtype).requires_grad_() for x in (q_unpad, k_unpad, v_unpad)
        ]
        out_ref, attn_ref = attention_ref(
            q_ref,
            k_ref,
            v_ref,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            qv=qv_ref,
            q_descale=q_descale,
            k_descale=k_descale,
            v_descale=v_descale,
            window_size=window_size,
            attention_chunk=attention_chunk,
            learnable_sink=learnable_sink,
            softcap=softcap,
        )
        out_pt, attn_pt = attention_ref(
            q_ref,
            k_ref,
            v_ref,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            qv=qv_ref,
            q_descale=q_descale,
            k_descale=k_descale,
            v_descale=v_descale,
            window_size=window_size,
            attention_chunk=attention_chunk,
            learnable_sink=learnable_sink,
            softcap=softcap,
            upcast=False,
            reorder_ops=True,
            intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
        )

        print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
        print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

        if query_unused_mask is not None:
            q_zero_masking = rearrange(query_unused_mask, "b s -> b s 1 1")

        # Numerical error if we just do any arithmetic on out_ref
        fwd_atol = 2 * (out_ref + 0.3 - 0.3 - out_ref).abs().max().item()
        rtol = 2 if softcap == 0.0 else 3

        pack_gqa_vals = [False, True, None]
        # num_splits_vals = [1, 3]
        num_splits_vals = [1]
        for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals):
            out_unpad, lse = flash_attn_varlen_func(
                q_unpad,
                k_unpad,
                v_unpad,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=None,
                max_seqlen_k=None,
                # seqused_q=seqused_q,
                # seqused_k=seqused_k,
                causal=causal,
                # qv=qv_unpad,
                # q_descale=q_descale,
                # k_descale=k_descale, v_descale=v_descale,
                window_size=window_size,
                # attention_chunk=attention_chunk,
                sinks=learnable_sink,
                softcap=softcap,
                pack_gqa=pack_gqa,
                return_softmax_lse=True,
            )
            out = output_pad_fn(out_unpad)
            if query_unused_mask is not None:
                out.masked_fill_(q_zero_masking, 0.0)
            print(f"Output max diff: {(out - out_ref).abs().max().item()}")
            print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
            # if not causal:
            #     print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
            # breakpoint()

            # Check that FlashAttention's numerical error is at most 3x the numerical error
            # of a Pytorch implementation.
            assert (out - out_ref).abs().max().item() <= rtol * (
                out_pt - out_ref
            ).abs().max().item() + fwd_atol

        if (
            dtype != torch.float8_e4m3fn
            and not has_qv
            and not dv > 256
            and not attention_chunk != 0
            and dv == d
            and not has_learnable_sink
            and False
        ):
            g_unpad = torch.randn_like(out_unpad)
            do_o = ((g_unpad.float() * out_unpad.float()).sum(-1)).transpose(-1, -2)
            # import flash_attn_3_cuda
            # dq_unpad, dk_unpad, dv_unpad, softmax_d, dq_accum, lse_log2 = flash_attn_3_cuda.bwd_varlen(
            #     g_unpad,
            #     q_unpad,
            #     k_unpad,
            #     v_unpad,
            #     out_unpad,
            #     lse,
            #     None,
            #     None,
            #     None,
            #     cu_seqlens_q,
            #     cu_seqlens_k,
            #     None, None,
            #     max_seqlen_q,
            #     max_seqlen_k,
            #     d ** (-0.5),
            #     causal,
            #     window_size[0], window_size[1],
            #     softcap,
            #     deterministic,
            #     0,  # sm_margin
            # )
            dq_unpad, dk_unpad, dv_unpad = torch.autograd.grad(
                out_unpad, (q_unpad, k_unpad, v_unpad), g_unpad
            )
            dq = dq_pad_fn(dq_unpad)
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
            if key_unused_mask is not None:
                k_zero_masking = rearrange(key_unused_mask, "b s -> b s 1 1")
                dk.masked_fill_(k_zero_masking, 0.0)
                dv.masked_fill_(k_zero_masking, 0.0)
            if query_unused_mask is not None:
                dq.masked_fill_(q_zero_masking, 0.0)
            # print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}")
            # assert (softmax_d - do_o).abs().max().item() <= 1e-5
            # assert dq_accum.abs().max().item() == 0.0
            g = output_pad_fn(g_unpad)

            # qk = torch.einsum('bthd,bshd->bhts', q / (d ** 0.5), k).float()
            # qk = torch.masked_fill(qk, rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
            # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
            # P = torch.softmax(qk, -1)
            # dP = P * (dS - (g.float() * out.float()).sum(-1).transpose(1, 2).unsqueeze(-1))
            # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
            # dV = torch.einsum('bhts,bthd->bshd', P, g.float())
            # dK = torch.einsum('bhts,bthd->bshd', dP, q.float())

            # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
            dq_ref, dk_ref, dv_ref = torch.autograd.grad(
                out_ref, (q_ref, k_ref, v_ref), g
            )
            dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g)
            print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
            print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
            print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
            print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
            print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
            print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
            print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
            print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
            print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
            print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
            print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
            print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
            # breakpoint()
            dq_atol = 2 * (dq_ref + 0.3 - 0.3 - dq_ref).abs().max().item() + (
                0 if softcap == 0 else 3e-4
            )
            assert (dq - dq_ref).abs().max().item() <= rtol * (
                dq_pt - dq_ref
            ).abs().max().item() + dq_atol
            dk_atol = 2 * (dk_ref + 0.3 - 0.3 - dk_ref).abs().max().item() + (
                0 if softcap == 0 else 3e-4
            )
            assert (dk - dk_ref).abs().max().item() <= rtol * (
                dk_pt - dk_ref
            ).abs().max().item() + dk_atol
            dv_atol = 2 * (dv_ref + 0.3 - 0.3 - dv_ref).abs().max().item() + (
                0 if softcap == 0 else 3e-4
            )
            assert (dv - dv_ref).abs().max().item() <= rtol * (
                dv_pt - dv_ref
            ).abs().max().item() + dv_atol


if __name__ == "__main__":
    pytest.main([__file__])