synthetic_benchmark.py 9.03 KB
Newer Older
Ying Sheng's avatar
Ying Sheng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""Benchmark online serving throughput.

On the server side, run one of the following commands:
    (SRT backend)
    python -m sglang.launch_server \
        --model <your_model> --tp <num_gpus> \
        --port 30000 --enable-flashinfer --disable-radix-cache

    (vLLM backend)
    python -m vllm.entrypoints.api_server \
        --model <your_model> --tensor <num_gpus> --swap-space 16 \
        --disable-log-requests --port 30000

    (TGI backend)
    ./launch_hf_server.sh <your_model>

On the client side, run:
    python benchmarks/benchmark_serving.py \
        --backend <backend> \
        --tokenizer <your_model> \
        --num-prompt <num_prompts> \
        --request-rate <request_rate>
        --input-len <input_len> \
        --output-len <output_len> \
        --port 30000
"""

import argparse
import asyncio
import json
import random
import time
from typing import AsyncGenerator, List, Tuple

import aiohttp
import numpy as np
from tqdm.asyncio import tqdm_asyncio
from transformers import PreTrainedTokenizerBase

from sglang.srt.hf_transformers_utils import get_tokenizer


def sample_requests(
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    input_len: int,
    output_len: int,
) -> List[Tuple[str, int, int]]:
    prompt = "Hello " * input_len
    prompt_token_ids = list(tokenizer(prompt).input_ids)
    requests = []
    for i in range(num_requests):
        requests.append((prompt, len(prompt_token_ids), output_len))
    
    return requests


async def get_request(
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue
        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


async def send_request(
    backend: str,
    api_url: str,
    prompt: str,
    prompt_len: int,
    output_len: int,
    best_of: int,
    use_beam_search: bool,
) -> None:
    headers = {"User-Agent": "Benchmark Client"}
    if backend == "vllm":
        pload = {
            "prompt": prompt,
            "n": 1,
            "best_of": best_of,
            "use_beam_search": use_beam_search,
            "temperature": 0.0 if use_beam_search else 1.0,
            "top_p": 1.0,
            "max_tokens": output_len,
            "ignore_eos": True,
            "stream": False,
        }
    elif backend == "tgi":
        assert not use_beam_search
        params = {
            "best_of": best_of,
            "max_new_tokens": output_len,
            "do_sample": True,
        }
        pload = {
            "inputs": prompt,
            "parameters": params,
        }
    elif backend == "srt":
        assert not use_beam_search
        params = {
            "ignore_eos": True,
            "max_new_tokens": output_len,
        }
        pload = {
            "text": prompt,
            "sampling_params": params,
        }
    elif backend == "lightllm":
        assert not use_beam_search
        params = {
            "ignore_eos": True,
            "max_new_tokens": output_len,
        }
        pload = {
            "inputs": prompt,
            "parameters": params,
        }
    else:
        raise ValueError(f"Unknown backend: {backend}")

    request_start_time = time.perf_counter()
    first_token_latency = None
    timeout = aiohttp.ClientTimeout(total=3 * 3600)
    async with aiohttp.ClientSession(timeout=timeout) as session:
        while True:
            async with session.post(api_url, headers=headers, json=pload) as response:
                chunks = []
                async for chunk, _ in response.content.iter_chunks():
                    if first_token_latency is None:
                        first_token_latency = time.perf_counter() - request_start_time
                    chunks.append(chunk)
            output = b"".join(chunks).decode("utf-8")
            output = json.loads(output)

            # Re-send the request if it failed.
            if "error" not in output:
                break

    request_latency = time.perf_counter() - request_start_time
    return (prompt_len, output_len, request_latency, first_token_latency)


async def benchmark(
    backend: str,
    api_url: str,
    input_requests: List[Tuple[str, int, int]],
    best_of: int,
    use_beam_search: bool,
    request_rate: float,
) -> None:
    tasks: List[asyncio.Task] = []
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
        task = asyncio.create_task(
            send_request(
                backend,
                api_url,
                prompt,
                prompt_len,
                output_len,
                best_of,
                use_beam_search,
            )
        )
        tasks.append(task)
    request_latency = await tqdm_asyncio.gather(*tasks)
    return request_latency


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)
    np.random.seed(args.seed)

    api_url = f"http://{args.host}:{args.port}/generate"
    tokenizer = get_tokenizer(args.tokenizer, trust_remote_code=args.trust_remote_code)
    input_requests = sample_requests(args.num_prompts, tokenizer, args.input_len, args.output_len)

    benchmark_start_time = time.perf_counter()
    # (prompt len, output len, latency, first_token_latency)
    request_latency = asyncio.run(
        benchmark(
            args.backend,
            api_url,
            input_requests,
            args.best_of,
            args.use_beam_search,
            args.request_rate,
        )
    )
    benchmark_end_time = time.perf_counter()
    benchmark_time = benchmark_end_time - benchmark_start_time
    print(f"Total time: {benchmark_time:.2f} s")

    # Compute the perf statistics.
    throughput = np.sum([output_len for _, output_len, _, _ in request_latency]) / benchmark_time
    print(f"Throughput: {throughput} token/s")
    avg_per_token_latency = np.mean(
        [
            latency / (prompt_len + output_len)
            for prompt_len, output_len, latency, _ in request_latency
        ]
    )
    print(f"Average latency per token: {avg_per_token_latency:.2f} s")
    avg_per_output_token_latency = np.mean(
        [(latency - first_token_latency) / output_len for _, output_len, latency, first_token_latency in request_latency]
    )
    print(f"Average TPOT: {avg_per_output_token_latency * 1000:.0f} ms")
    avg_first_token_latency = np.mean(
        [first_token_latency for _, _, _, first_token_latency in request_latency]
    )
    print(f"Average TTFT: {avg_first_token_latency:.2f} s")

    stats = {"num_prompts": args.num_prompts, "input_len": args.input_len, "output_len": args.output_len,
            "total_time (s)": benchmark_time, "throughput (token/s)": throughput, "avg_per_token_latency (s)": avg_per_token_latency,
            "TPOT (ms)": avg_per_output_token_latency, "TTFT (s)": avg_first_token_latency}

    with open(args.output_file, "a") as f:
        f.write(json.dumps(stats) + "\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Benchmark the online serving throughput."
    )
    parser.add_argument(
        "--backend",
        type=str,
        default="vllm",
        choices=["vllm", "tgi", "srt", "lightllm"],
    )
    parser.add_argument("--host", type=str, default="localhost")
    parser.add_argument("--port", type=int, default=8000)
    parser.add_argument(
        "--tokenizer", type=str, required=True, help="Name or path of the tokenizer."
    )
    parser.add_argument(
        "--best-of",
        type=int,
        default=1,
        help="Generates `best_of` sequences per prompt and " "returns the best one.",
    )
    parser.add_argument("--use-beam-search", action="store_true")
    parser.add_argument(
        "--num-prompts", type=int, default=1000, help="Number of prompts to process."
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=float("inf"),
        help="Number of requests per second. If this is inf, "
        "then all the requests are sent at time 0. "
        "Otherwise, we use Poisson process to synthesize "
        "the request arrival times.",
    )
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument(
        "--trust-remote-code",
        action="store_true",
        help="trust remote code from huggingface",
    )
    parser.add_argument(
        "--input-len",
        type=int,
        default=512,
        help="Number of input tokens"
    )
    parser.add_argument(
        "--output-len",
        type=int,
        default=128,
        help="Number of output tokens"
    )
    parser.add_argument(
        "--output-file",
        type=str,
        default="perf_stats.jsonl",
        help="output file path for performance statistics"
    )
    args = parser.parse_args()
    main(args)