test_moe_align.py 6.36 KB
Newer Older
1
2
3
import itertools

import pytest
4
import torch
5
6
import triton
import triton.language as tl
7
8
9
from sgl_kernel import moe_align_block_size


10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def ceil_div(a, b):
    return (a + b - 1) // b


@triton.jit
def moe_align_block_size_stage1(
    topk_ids_ptr,
    tokens_cnts_ptr,
    num_experts: tl.constexpr,
    numel: tl.constexpr,
    tokens_per_thread: tl.constexpr,
):
    pid = tl.program_id(0)
    start_idx = pid * tokens_per_thread
    off_c = (pid + 1) * num_experts

    for i in range(tokens_per_thread):
        if start_idx + i < numel:
            idx = tl.load(topk_ids_ptr + start_idx + i)
            token_cnt = tl.load(tokens_cnts_ptr + off_c + idx)
            tl.store(tokens_cnts_ptr + off_c + idx, token_cnt + 1)


@triton.jit
def moe_align_block_size_stage2(
    tokens_cnts_ptr,
    num_experts: tl.constexpr,
):
    pid = tl.program_id(0)
    last_cnt = 0
    for i in range(1, num_experts + 1):
        token_cnt = tl.load(tokens_cnts_ptr + i * num_experts + pid)
        last_cnt = last_cnt + token_cnt
        tl.store(tokens_cnts_ptr + i * num_experts + pid, last_cnt)


@triton.jit
def moe_align_block_size_stage3(
    total_tokens_post_pad_ptr,
    tokens_cnts_ptr,
    cumsum_ptr,
    num_experts: tl.constexpr,
    block_size: tl.constexpr,
):
    last_cumsum = 0
    off_cnt = num_experts * num_experts
    for i in range(1, num_experts + 1):
        token_cnt = tl.load(tokens_cnts_ptr + off_cnt + i - 1)
        last_cumsum = last_cumsum + tl.cdiv(token_cnt, block_size) * block_size
        tl.store(cumsum_ptr + i, last_cumsum)
    tl.store(total_tokens_post_pad_ptr, last_cumsum)


@triton.jit
def moe_align_block_size_stage4(
    topk_ids_ptr,
    sorted_token_ids_ptr,
    expert_ids_ptr,
    tokens_cnts_ptr,
    cumsum_ptr,
    num_experts: tl.constexpr,
    block_size: tl.constexpr,
    numel: tl.constexpr,
    tokens_per_thread: tl.constexpr,
):
    pid = tl.program_id(0)
    start_idx = tl.load(cumsum_ptr + pid)
    end_idx = tl.load(cumsum_ptr + pid + 1)

    for i in range(start_idx, end_idx, block_size):
        tl.store(expert_ids_ptr + i // block_size, pid)

    start_idx = pid * tokens_per_thread
    off_t = pid * num_experts

    for i in range(start_idx, tl.minimum(start_idx + tokens_per_thread, numel)):
        expert_id = tl.load(topk_ids_ptr + i)
        token_cnt = tl.load(tokens_cnts_ptr + off_t + expert_id)
        rank_post_pad = token_cnt + tl.load(cumsum_ptr + expert_id)
        tl.store(sorted_token_ids_ptr + rank_post_pad, i)
        tl.store(tokens_cnts_ptr + off_t + expert_id, token_cnt + 1)


def moe_align_block_size_triton(
    topk_ids: torch.Tensor,
    num_experts: int,
    block_size: int,
    sorted_token_ids: torch.Tensor,
    expert_ids: torch.Tensor,
    num_tokens_post_pad: torch.Tensor,
) -> None:
    numel = topk_ids.numel()
    grid = (num_experts,)
    tokens_cnts = torch.zeros(
        (num_experts + 1, num_experts), dtype=torch.int32, device=topk_ids.device
    )
    cumsum = torch.zeros((num_experts + 1,), dtype=torch.int32, device=topk_ids.device)
    tokens_per_thread = ceil_div(numel, num_experts)

    moe_align_block_size_stage1[grid](
        topk_ids,
        tokens_cnts,
        num_experts,
        numel,
        tokens_per_thread,
    )
    moe_align_block_size_stage2[grid](
        tokens_cnts,
        num_experts,
    )
    moe_align_block_size_stage3[(1,)](
        num_tokens_post_pad,
        tokens_cnts,
        cumsum,
        num_experts,
        block_size,
    )
    moe_align_block_size_stage4[grid](
        topk_ids,
        sorted_token_ids,
        expert_ids,
        tokens_cnts,
        cumsum,
        num_experts,
        block_size,
        numel,
        tokens_per_thread,
    )


@pytest.mark.parametrize(
141
    "block_size,num_tokens,topk,num_experts",
142
143
144
145
146
    list(
        itertools.product(
            [32, 64, 128, 256],  # block_size
            [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096],  # num_tokens
            [1, 2, 4, 8, 16, 32, 64],  # topk
147
            [64, 160, 256, 257, 260, 264],  #  num_experts
148
149
150
        )
    ),
)
151
152
153
def test_moe_align_block_size_compare_implementations(
    block_size, num_tokens, topk, num_experts
):
154
155
    # For DeepSeek V3, we have 256 experts

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    topk_ids = torch.stack(
        [
            torch.randperm(num_experts, dtype=torch.int32, device="cuda")[:topk]
            for _ in range(num_tokens)
        ]
    )

    max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)

    sorted_ids_cuda = torch.empty(
        (max_num_tokens_padded,), dtype=torch.int32, device=topk_ids.device
    )
    sorted_ids_cuda.fill_(topk_ids.numel())
    max_num_m_blocks = max_num_tokens_padded // block_size
    expert_ids_cuda = torch.zeros(
        (max_num_m_blocks,), dtype=torch.int32, device=topk_ids.device
    )
    num_tokens_post_pad_cuda = torch.empty(
        (1), dtype=torch.int32, device=topk_ids.device
    )
176
    token_cnts_buffer = torch.empty(
177
178
179
180
        (num_experts + 1) * num_experts,
        dtype=torch.int32,
        device=topk_ids.device,
    )
181
    cumsum_buffer = torch.empty(
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        num_experts + 1, dtype=torch.int32, device=topk_ids.device
    )

    sorted_ids_triton = torch.empty_like(sorted_ids_cuda)
    sorted_ids_triton.fill_(topk_ids.numel())
    expert_ids_triton = torch.zeros_like(expert_ids_cuda)
    num_tokens_post_pad_triton = torch.empty_like(num_tokens_post_pad_cuda)

    moe_align_block_size(
        topk_ids,
        num_experts,
        block_size,
        sorted_ids_cuda,
        expert_ids_cuda,
        num_tokens_post_pad_cuda,
        token_cnts_buffer,
        cumsum_buffer,
    )

    moe_align_block_size_triton(
        topk_ids,
        num_experts,
        block_size,
        sorted_ids_triton,
        expert_ids_triton,
        num_tokens_post_pad_triton,
    )

    assert torch.allclose(expert_ids_cuda, expert_ids_triton), (
        f"Expert IDs mismatch for block_size={block_size}, "
        f"num_tokens={num_tokens}, topk={topk}\n"
        f"CUDA expert_ids: {expert_ids_cuda}\n"
        f"Triton expert_ids: {expert_ids_triton}"
    )

    assert torch.allclose(num_tokens_post_pad_cuda, num_tokens_post_pad_triton), (
        f"Num tokens post pad mismatch for block_size={block_size}, "
        f"num_tokens={num_tokens}, topk={topk}\n"
        f"CUDA num_tokens_post_pad: {num_tokens_post_pad_cuda}\n"
        f"Triton num_tokens_post_pad: {num_tokens_post_pad_triton}"
    )
223
224
225


if __name__ == "__main__":
226
    pytest.main([__file__])