test_moe.py 6.93 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import itertools
import math
import unittest

# TODO: use interface in cpu.py
import sgl_kernel
import torch

kernel = torch.ops.sgl_kernel

11
12
torch.manual_seed(0)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from utils import (
    BLOCK_K,
    BLOCK_N,
    factor_for_scale,
    fp8_max,
    fp8_min,
    native_fp8_fused_moe,
    precision,
    scaled_weight,
    torch_naive_fused_moe,
    torch_w8a8_per_column_fused_moe,
)

from sglang.test.test_utils import CustomTestCase


def fused_moe(a, w1, w2, score, topk, renormalize, prepack):

    G = 1
    topk_group = 1

    B, D = a.shape
    topk_weights = torch.empty(B, topk, dtype=torch.float32)
    topk_ids = torch.empty(B, topk, dtype=torch.int32)
    topk_weights, topk_ids = kernel.grouped_topk_cpu(
38
        a, score, topk, renormalize, G, topk_group, 0, None, None
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    )

    packed_w1 = kernel.convert_weight_packed(w1) if prepack else w1
    packed_w2 = kernel.convert_weight_packed(w2) if prepack else w2

    inplace = True
    return kernel.fused_experts_cpu(
        a,
        packed_w1,
        packed_w2,
        topk_weights,
        topk_ids,
        inplace,
        False,
        False,
        None,
        None,
        None,
        None,
        None,
        prepack,
    )


class TestFusedExperts(CustomTestCase):
    M = [2, 114]
    N = [32]
    K = [32]
    E = [4]
    topk = [2]
    renormalize = [False, True]

    M_int8 = [1, 39]
    N_int8 = [128]
    K_int8 = [256]
    E_int8 = [8]
    topk_int8 = [3]

    M_fp8 = [2, 121]
    N_fp8 = [512]
    K_fp8 = [256]
    E_fp8 = [8]
    topk_fp8 = [4]

    def _bf16_moe(self, m, n, k, e, topk, renormalize):
        dtype = torch.bfloat16
        prepack = True

        a = torch.randn((m, k), device="cpu", dtype=dtype) / 10
        w1 = torch.randn((e, 2 * n, k), device="cpu", dtype=dtype) / 10
        w2 = torch.randn((e, k, n), device="cpu", dtype=dtype) / 10
        score = torch.randn((m, e), device="cpu", dtype=dtype)

        torch_output = torch_naive_fused_moe(a, w1, w2, score, topk, renormalize)
        fused_output = fused_moe(a, w1, w2, score, topk, renormalize, prepack)

        atol = rtol = precision[torch_output.dtype]
96
        torch.testing.assert_close(torch_output, fused_output, atol=atol, rtol=rtol)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

    def test_bf16_moe(self):
        for params in itertools.product(
            self.M,
            self.N,
            self.K,
            self.E,
            self.topk,
            self.renormalize,
        ):
            with self.subTest(
                m=params[0],
                n=params[1],
                k=params[2],
                e=params[3],
                topk=params[4],
                renormalize=params[5],
            ):
                self._bf16_moe(*params)

    def _int8_moe(self, M, N, K, E, topk):
        dtype = torch.bfloat16
        prepack = True

        # Initialize int8 quantization parameters
        int8_factor_for_scale = 1e-2
        int8_max = 127
        int8_min = -128

        # Input tensor
        # M * K
        a = torch.randn((M, K), dtype=dtype) / math.sqrt(K)

        # Generate int8 weights
        w1_fp32 = (torch.rand((E, 2 * N, K), dtype=torch.float32) - 0.5) * 2
        w1 = (w1_fp32 * int8_max).clamp(min=int8_min, max=int8_max).to(torch.int8)

        w2_fp32 = (torch.rand((E, K, N), dtype=torch.float32) - 0.5) * 2
        w2 = (w2_fp32 * int8_max).clamp(min=int8_min, max=int8_max).to(torch.int8)

        # Generate scale for each column (per-column quantization)
        w1_s = torch.rand(E, 2 * N, device=w1_fp32.device) * int8_factor_for_scale
        w2_s = torch.rand(E, K, device=w2_fp32.device) * int8_factor_for_scale

        # Calculate routing
        score = torch.randn((M, E), dtype=dtype)
        score = torch.softmax(score, dim=-1, dtype=torch.float32)
        topk_weight, topk_ids = torch.topk(score, topk)

        ref_out = torch_w8a8_per_column_fused_moe(
            a, w1, w2, w1_s, w2_s, topk_weight, topk_ids, topk
        )

        inplace = True
        packed_w1 = kernel.convert_weight_packed(w1) if prepack else w1
        packed_w2 = kernel.convert_weight_packed(w2) if prepack else w2
        out = kernel.fused_experts_cpu(
            a,
            packed_w1,
            packed_w2,
            topk_weight,
            topk_ids.to(torch.int32),
            inplace,
            True,
            False,
            w1_s,
            w2_s,
            None,
            None,
            None,
            prepack,
        )

        atol = rtol = precision[ref_out.dtype]
        # Increase the tolerance for large input shapes
        if M > 35:
            atol = rtol = 0.02
174
        torch.testing.assert_close(ref_out, out, atol=atol, rtol=rtol)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

    def test_int8_moe(self):
        for params in itertools.product(
            self.M_int8,
            self.N_int8,
            self.K_int8,
            self.E_int8,
            self.topk_int8,
        ):
            with self.subTest(
                M=params[0],
                N=params[1],
                K=params[2],
                E=params[3],
                topk=params[4],
            ):
                self._int8_moe(*params)

    def _fp8_moe(self, M, N, K, E, topk):
        dtype = torch.bfloat16

        a = torch.randn(M, K, dtype=dtype) / math.sqrt(K)

        w1_fp32 = torch.randn(E, 2 * N, K)
        w1 = (w1_fp32 * fp8_max).clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)

        w2_fp32 = torch.randn(E, K, N)
        w2 = (w2_fp32 * fp8_max).clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)

        w1s = torch.randn(E, 2 * N // BLOCK_N, K // BLOCK_K) * factor_for_scale
        w2s = torch.randn(E, K // BLOCK_N, N // BLOCK_K) * factor_for_scale

        w1_scaled = scaled_weight(w1, w1s)
        w2_scaled = scaled_weight(w2, w2s)

        score = torch.randn((M, E), dtype=dtype)
        score = torch.softmax(score, dim=-1, dtype=torch.float32)
        topk_weight, topk_ids = torch.topk(score, topk)

        w1 = kernel.convert_weight_packed(w1)
        w2 = kernel.convert_weight_packed(w2)

        ref_out = native_fp8_fused_moe(
            a, w1_scaled, w2_scaled, topk_weight, topk_ids, topk
        )
        out = kernel.fused_experts_cpu(
            a,
            w1,
            w2,
            topk_weight,
            topk_ids.to(torch.int32),
            False,
            False,
            True,
            w1s,
            w2s,
            [BLOCK_N, BLOCK_K],
            None,
            None,
            True,
        )

        atol = rtol = precision[dtype]
238
        torch.testing.assert_close(ref_out.bfloat16(), out, atol=atol, rtol=rtol)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

    def test_fp8_moe(self):
        for params in itertools.product(
            self.M_fp8,
            self.N_fp8,
            self.K_fp8,
            self.E_fp8,
            self.topk_fp8,
        ):
            with self.subTest(
                M=params[0],
                N=params[1],
                K=params[2],
                E=params[3],
                topk=params[4],
            ):
                self._fp8_moe(*params)


if __name__ == "__main__":
    unittest.main()