test_mla.py 4.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import itertools
import unittest

import sgl_kernel
import torch
from torch.nn.functional import scaled_dot_product_attention
from utils import precision

from sglang.test.test_utils import CustomTestCase

11
12
torch.manual_seed(0)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

class TestMLA(CustomTestCase):
    def _run_sdpa_forward_decode(
        self,
        query: torch.Tensor,
        output: torch.Tensor,
        k_cache: torch.Tensor,
        v_cache: torch.Tensor,
        key: torch.Tensor,
        loc: torch.Tensor,
        req_to_token: torch.Tensor,
        req_pool_indices: torch.Tensor,
        seq_lens: torch.Tensor,
        scaling=None,
        enable_gqa=False,
        causal=False,
    ):
        # set kv cache
        k_cache[loc] = key

        # [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
        query = query.movedim(0, query.dim() - 2)

        start_q, start_kv = 0, 0
        for seq_idx in range(seq_lens.shape[0]):
            seq_len_q = 1
            seq_len_kv = seq_lens[seq_idx]
            end_q = start_q + seq_len_q
            end_kv = start_kv + seq_len_kv

            per_req_query = query[:, start_q:end_q, :]

            # get key and value from cache. per_req_tokens contains the kv cache
            # index for each token in the sequence.
            req_pool_idx = req_pool_indices[seq_idx]
            per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
            per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
            per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)

            per_req_out = (
                scaled_dot_product_attention(
                    per_req_query.unsqueeze(0),
                    per_req_key.unsqueeze(0),
                    per_req_value.unsqueeze(0),
                    enable_gqa=enable_gqa,
                    scale=scaling,
                    is_causal=causal,
                )
                .squeeze(0)
                .movedim(query.dim() - 2, 0)
            )
            output[start_q:end_q, :, :] = per_req_out
            start_q, start_kv = end_q, end_kv

        return output

    def _test_grouped_decode_attention_once(self, B, H_Q, H_KV, D, D_V, seq_len):
        dtype = torch.bfloat16

        total_tokens = B * seq_len
        sm_scale = 1.0 / (D**0.5)
        logit_cap = 0.0
        num_kv_splits = 8
        enable_gqa = H_Q != H_KV

        # q represents the new token being generated, one per batch
        q = torch.randn(B, H_Q, D, dtype=dtype)

        # k_buffer and v_buffer represent all previous tokens
        k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype)
        v_buffer = k_buffer.narrow(2, 0, D_V)

        key = torch.randn(B, H_KV, D, dtype=dtype)
        value = key.narrow(2, 0, D_V)
        # make sure no duplicates in loc
        loc = torch.randperm(total_tokens)[:B].to(torch.int64)

        k_buffer2 = k_buffer.clone()
        v_buffer2 = k_buffer2.narrow(2, 0, D_V)

        # o will have the same shape as q
        o = torch.zeros(B, H_Q, D_V, dtype=dtype)
        o_grouped = torch.zeros(B, H_Q, D_V, dtype=dtype)

        req_to_token = torch.arange(total_tokens).reshape(B, seq_len).to(torch.int32)
        b_req_idx = torch.arange(B).to(torch.int64)
        b_seq_len = torch.full((B,), seq_len).to(torch.int64)

        attn_logits = torch.empty(
            (B, H_Q, num_kv_splits, D_V + 1),
            dtype=torch.float32,
        )

        torch.ops.sgl_kernel.decode_attention_cpu(
            q,
            k_buffer2,
            v_buffer2,
            o,
            key,
            value,
            loc,
            attn_logits,
            req_to_token,
            b_req_idx,
            b_seq_len,
            sm_scale,
            logit_cap,
        )

        self._run_sdpa_forward_decode(
            q,
            o_grouped,
            k_buffer,
            v_buffer,
            key,
            loc,
            req_to_token,
            b_req_idx,
            b_seq_len,
            scaling=sm_scale,
            enable_gqa=enable_gqa,
        )

        cos_sim = torch.nn.functional.cosine_similarity(
            o.flatten(), o_grouped.flatten(), dim=0
        )
        atol = rtol = precision[q.dtype]
        self.assertGreater(cos_sim.item(), 0.99)
        torch.testing.assert_close(o, o_grouped, atol=atol, rtol=rtol)
        torch.testing.assert_close(k_buffer, k_buffer2, atol=atol, rtol=rtol)
        torch.testing.assert_close(v_buffer, v_buffer2, atol=atol, rtol=rtol)

    def test_grouped_decode_attention(self):
        configs = [
            (1, 22, 1, 576, 512, 8 * 111),
            (4, 22, 1, 576, 512, 8 * 128),
            (40, 22, 1, 576, 512, 8 * 133),
        ]

        for B, H_Q, H_KV, D, D_V, seqlen in configs:
            self._test_grouped_decode_attention_once(B, H_Q, H_KV, D, D_V, seqlen)


if __name__ == "__main__":
    unittest.main()