test_gemm.py 5.3 KB
Newer Older
1
2
3
import itertools
import unittest

blzheng's avatar
blzheng committed
4
5
# TODO: use interface in cpu.py
import sgl_kernel
6
7
8
9
10
11
12
13
14
15
16
import torch
import torch.nn as nn
from utils import (
    convert_weight,
    native_w8a8_per_token_matmul,
    per_token_quant_int8,
    precision,
)

from sglang.test.test_utils import CustomTestCase

17
18
torch.manual_seed(0)

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

class Mod(nn.Module):
    def __init__(self, input_channel, output_channel, has_bias):
        super(Mod, self).__init__()
        self.linear = torch.nn.Linear(input_channel, output_channel, has_bias)

    def forward(self, x):
        return self.linear(x)


class TestGemm(CustomTestCase):
    M = [1, 101]
    N = [32 * 13]
    K = [32 * 16]
    has_bias = [False, True]

    M_int8 = [2, 128]
    N_int8 = [32 * 12]
    K_int8 = [32 * 17]

    M_fp8 = [1, 11]
    N_fp8 = [128, 224]
    K_fp8 = [512, 576]

    def _bf16_gemm(self, M, N, K, has_bias):

        mat1 = torch.randn(M, K, dtype=torch.bfloat16)
        mat2 = torch.randn(N, K, dtype=torch.bfloat16)

        ref = torch.matmul(mat1.float(), mat2.float().t())
        if has_bias:
            bias = torch.randn(N, dtype=torch.float32)
            ref.add_(bias.bfloat16())

        ref = ref.bfloat16()

blzheng's avatar
blzheng committed
55
56
57
        out = torch.ops.sgl_kernel.weight_packed_linear(
            mat1, mat2, bias if has_bias else None, False
        )
58

blzheng's avatar
blzheng committed
59
60
61
62
        packed_mat2 = torch.ops.sgl_kernel.convert_weight_packed(mat2)
        out2 = torch.ops.sgl_kernel.weight_packed_linear(
            mat1, packed_mat2, bias if has_bias else None, True
        )
63
64

        atol = rtol = precision[ref.dtype]
65
66
        torch.testing.assert_close(ref, out, atol=atol, rtol=rtol)
        torch.testing.assert_close(ref, out2, atol=atol, rtol=rtol)
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    def test_bf16_gemm(self):
        for params in itertools.product(
            self.M,
            self.N,
            self.K,
            self.has_bias,
        ):
            with self.subTest(
                M=params[0],
                N=params[1],
                K=params[2],
                has_bias=params[3],
            ):
                self._bf16_gemm(*params)

    def _int8_gemm(self, M, N, K, has_bias):
        dtype = torch.bfloat16
        A = torch.randn((M, K), dtype=dtype) / 10
        Aq, As = per_token_quant_int8(A)

        factor_for_scale = 1e-2
        int8_max = 127
        int8_min = -128

        B = (torch.rand((N, K), dtype=torch.float32) - 0.5) * 2
        Bq = (B * int8_max).clamp(min=int8_min, max=int8_max).to(torch.int8)
        Bs = torch.rand(N) * factor_for_scale

        bias = torch.randn(N) if has_bias else None
        ref_out = native_w8a8_per_token_matmul(Aq, Bq, As, Bs, bias, dtype)

        atol = rtol = precision[ref_out.dtype]

blzheng's avatar
blzheng committed
101
102
        Aq2, As2 = torch.ops.sgl_kernel.per_token_quant_int8_cpu(A)
        out = torch.ops.sgl_kernel.int8_scaled_mm_cpu(
103
104
            Aq2, Bq, As2, Bs, bias if has_bias else None, torch.bfloat16, False
        )
105
        torch.testing.assert_close(ref_out, out, atol=atol, rtol=rtol)
106
107

        # test the fused version
blzheng's avatar
blzheng committed
108
        fused_out = torch.ops.sgl_kernel.int8_scaled_mm_with_quant(
109
110
            A, Bq, Bs, bias if has_bias else None, torch.bfloat16, False
        )
111
        torch.testing.assert_close(ref_out, fused_out, atol=atol, rtol=rtol)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

    def test_int8_gemm(self):
        for params in itertools.product(
            self.M_int8,
            self.N_int8,
            self.K_int8,
            self.has_bias,
        ):
            with self.subTest(
                M=params[0],
                N=params[1],
                K=params[2],
                has_bias=params[3],
            ):
                self._int8_gemm(*params)

    def _fp8_gemm(self, M, N, K, has_bias):
        prepack = True
        chunk = False
        scale_block_size_N = 64
        scale_block_size_K = 128
        assert scale_block_size_N <= N
        assert scale_block_size_K <= K
        A_dtype = torch.bfloat16

        model = Mod(K, N, has_bias).eval()
        if chunk:
            data = torch.randn(M, K + 6, dtype=A_dtype).narrow(1, 0, K)
        else:
            data = torch.randn(M, K, dtype=A_dtype)

        weight = model.linear.weight  # (N, K)

        if has_bias:
            bias = model.linear.bias

        fp8_weight, scales, dq_weight = convert_weight(
            weight, [scale_block_size_N, scale_block_size_K], A_dtype
        )

        if has_bias:
            ref = torch.matmul(data.to(A_dtype), dq_weight.T) + bias.to(A_dtype)
        else:
            ref = torch.matmul(data.to(A_dtype), dq_weight.T)

        if prepack:
blzheng's avatar
blzheng committed
158
            fp8_weight = torch.ops.sgl_kernel.convert_weight_packed(fp8_weight)
159

blzheng's avatar
blzheng committed
160
        opt = torch.ops.sgl_kernel.fp8_scaled_mm_cpu(
161
162
163
164
165
166
167
168
169
            data,
            fp8_weight,
            scales,
            [scale_block_size_N, scale_block_size_K],
            bias if has_bias else None,
            data.dtype,
            prepack,
        )
        atol = rtol = precision[ref.dtype]
170
        torch.testing.assert_close(ref, opt, atol=atol, rtol=rtol)
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    def test_fp8_gemm(self):
        for params in itertools.product(
            self.M_fp8,
            self.N_fp8,
            self.K_fp8,
            self.has_bias,
        ):
            with self.subTest(
                M=params[0],
                N=params[1],
                K=params[2],
                has_bias=params[3],
            ):
                self._fp8_gemm(*params)


if __name__ == "__main__":
    unittest.main()