test_extend.py 6.86 KB
Newer Older
1
2
import unittest

3
import sgl_kernel
4
5
6
7
8
import torch
from torch.nn.functional import scaled_dot_product_attention

from sglang.test.test_utils import CustomTestCase

9
10
torch.manual_seed(0)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

class TestExtendAttention(CustomTestCase):

    def _run_sdpa_forward_extend(
        self,
        query: torch.Tensor,
        output: torch.Tensor,
        k_cache: torch.Tensor,
        v_cache: torch.Tensor,
        req_to_token: torch.Tensor,
        req_pool_indices: torch.Tensor,
        seq_lens: torch.Tensor,
        extend_prefix_lens: torch.Tensor,
        extend_seq_lens: torch.Tensor,
        scaling=None,
        enable_gqa=False,
        causal=False,
    ):

        assert seq_lens.shape[0] == extend_prefix_lens.shape[0]
        assert seq_lens.shape[0] == extend_seq_lens.shape[0]

        # [num_tokens, num_heads, head_size] -> [num_heads, num_tokens, head_size]
        query = query.movedim(0, query.dim() - 2)

        start_q, start_kv = 0, 0
        for seq_idx in range(seq_lens.shape[0]):

            extend_seq_len_q = extend_seq_lens[seq_idx]
            prefill_seq_len_q = extend_prefix_lens[seq_idx]

            seq_len_kv = seq_lens[seq_idx]
            end_q = start_q + extend_seq_len_q
            end_kv = start_kv + seq_len_kv

            per_req_query = query[:, start_q:end_q, :]
            per_req_query_redudant = torch.empty(
                (per_req_query.shape[0], seq_len_kv, per_req_query.shape[2]),
                dtype=per_req_query.dtype,
                device=per_req_query.device,
            )

            per_req_query_redudant[:, prefill_seq_len_q:, :] = per_req_query

            # get key and value from cache. per_req_tokens contains the kv cache
            # index for each token in the sequence.
            req_pool_idx = req_pool_indices[seq_idx]
            per_req_tokens = req_to_token[req_pool_idx, :seq_len_kv]
            per_req_key = k_cache[per_req_tokens].movedim(0, query.dim() - 2)
            per_req_value = v_cache[per_req_tokens].movedim(0, query.dim() - 2)

            per_req_out_redudant = (
                scaled_dot_product_attention(
                    per_req_query_redudant.unsqueeze(0),
                    per_req_key.unsqueeze(0),
                    per_req_value.unsqueeze(0),
                    enable_gqa=enable_gqa,
                    scale=scaling,
                    is_causal=causal,
                )
                .squeeze(0)
                .movedim(query.dim() - 2, 0)
            )
            output[start_q:end_q, :, :] = per_req_out_redudant[prefill_seq_len_q:, :, :]
            start_q, start_kv = end_q, end_kv
        return output

    def _test_extend_attention_once(self, B, N_CTX, H_Q, H_KV, D, DV, mla=False):
        dtype = torch.bfloat16

        b_seq_len_prefix = torch.randint(1, N_CTX // 2, (B,), dtype=torch.int32)
        if mla:
            b_seq_len_prefix.zero_()
        b_seq_len_extend = torch.randint(1, N_CTX // 2, (B,), dtype=torch.int32)
        b_seq_len = b_seq_len_prefix + b_seq_len_extend
        max_len_in_batch = torch.max(b_seq_len, 0)[0].item()

        b_req_idx = torch.arange(B, dtype=torch.int32)
        req_to_tokens = torch.empty((B, max_len_in_batch), dtype=torch.int32)
        b_start_loc = torch.zeros((B,), dtype=torch.int32)
        b_start_loc[1:] = torch.cumsum(b_seq_len[:-1], 0)
        b_start_loc_extend = torch.zeros((B,), dtype=torch.int32)
        b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0)

        for i in range(B):
            req_to_tokens[i, : b_seq_len[i]] = torch.arange(
                b_start_loc[i], b_start_loc[i] + b_seq_len[i]
            )

        total_token_num = torch.sum(b_seq_len).item()
        extend_token_num = torch.sum(b_seq_len_extend).item()

        H_BUF = 1 if mla else H_KV
        k_buffer = torch.randn((total_token_num, H_BUF, D), dtype=dtype)
        v_buffer = torch.randn((total_token_num, H_BUF, DV), dtype=dtype)

        k_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype)
        v_extend = torch.empty((extend_token_num, H_KV, DV), dtype=dtype)
        q_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype)

        for i in range(B):
            extend_start_in_buffer = b_start_loc[i] + b_seq_len_prefix[i]
            extend_end_in_buffer = b_start_loc[i] + b_seq_len[i]
            extend_start = b_start_loc_extend[i]
            extend_end = b_start_loc_extend[i] + b_seq_len_extend[i]
            k_extend[extend_start:extend_end] = k_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            v_extend[extend_start:extend_end] = v_buffer[
                extend_start_in_buffer:extend_end_in_buffer
            ]
            q_extend[extend_start:extend_end] = torch.randn(
                (b_seq_len_extend[i], H_Q, D), dtype=dtype
            )

        # k_extend, v_extend, k_buffer and v_buffer supports non-contiguous tensors
        k_extend = k_extend.transpose(0, 1).contiguous().transpose(0, 1)
        v_extend = v_extend.transpose(0, 1).contiguous().transpose(0, 1)
        k_buffer = k_buffer.transpose(0, 1).contiguous().transpose(0, 1)
        v_buffer = v_buffer.transpose(0, 1).contiguous().transpose(0, 1)

        b_seq_len_extend = b_seq_len - b_seq_len_prefix
        b_start_loc_extend = torch.zeros_like(b_seq_len)
        b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0)
        max_len_extend = torch.max(b_seq_len_extend, 0)[0].item()

        sm_scale = 1.0 / (D**0.5)
        logit_cap = 0.0

        # handle index type
        b_req_idx = b_req_idx.to(torch.int64)
        b_seq_len = b_seq_len.to(torch.int64)

        enable_gqa = H_Q != H_KV
        o_ref = torch.empty((extend_token_num, H_Q, DV), dtype=dtype)
        self._run_sdpa_forward_extend(
            q_extend,
            o_ref,
            k_buffer,
            v_buffer,
            req_to_tokens,
            b_req_idx,
            b_seq_len,
            b_seq_len_prefix,
            b_seq_len_extend,
            scaling=sm_scale,
            enable_gqa=enable_gqa,
            causal=True,
        )

        o_extend = torch.empty((extend_token_num, H_Q, DV), dtype=dtype)
162
        torch.ops.sgl_kernel.extend_attention_cpu(
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
            q_extend,
            k_extend,
            v_extend,
            o_extend,
            k_buffer,
            v_buffer,
            req_to_tokens,
            b_req_idx,
            b_seq_len,
            b_seq_len_extend,
            b_start_loc_extend,
            max_len_extend,
            sm_scale,
            logit_cap,
        )

        torch.testing.assert_close(o_ref, o_extend, atol=1e-2, rtol=1e-2)

    def test_extend_attention(self):
        for is_mla in [True, False]:
            self._test_extend_attention_once(1, 123, 1, 1, 128, 96, is_mla)
            self._test_extend_attention_once(1, 123, 16, 1, 128, 96, is_mla)
            self._test_extend_attention_once(4, 1230, 16, 4, 128, 96, is_mla)


if __name__ == "__main__":
    unittest.main()