router.rs 38.2 KB
Newer Older
1
2
// gRPC Router Implementation

3
4
5
6
7
8
9
10
11
12
13
14
15
use std::collections::HashMap;
use std::sync::Arc;
use std::time::Duration;

use async_trait::async_trait;
use axum::{
    body::Body,
    extract::Request,
    http::{HeaderMap, StatusCode},
    response::{IntoResponse, Response},
};
use tracing::{debug, error, info, warn};

16
use crate::config::types::RetryConfig;
17
use crate::core::{
18
    BasicWorkerBuilder, CircuitBreakerConfig, HealthConfig, WorkerRegistry, WorkerType,
19
};
20
use crate::grpc::{proto, SglangSchedulerClient};
21
use crate::metrics::RouterMetrics;
22
use crate::policies::{LoadBalancingPolicy, PolicyRegistry};
23
use crate::protocols::spec::{ChatCompletionRequest, ResponseFormat, StringOrArray};
24
use crate::reasoning_parser::ParserFactory;
25
use crate::routers::RouterTrait;
26
use crate::tokenizer::traits::Tokenizer;
27
use crate::tool_parser::ParserRegistry;
28
29
use uuid::Uuid;

30
use crate::tokenizer::chat_template::{ChatTemplateContentFormat, ChatTemplateParams};
31
32
use serde_json::Value;

33
34
35
36
37
38
39
// Data structures for processing
#[derive(Debug)]
pub struct ProcessedMessages {
    pub text: String,
    pub multimodal_inputs: Option<proto::MultimodalInputs>,
    pub stop_sequences: Option<StringOrArray>,
}
40

41
42
43
/// gRPC router implementation for SGLang
#[allow(dead_code)] // Fields will be used once implementation is complete
pub struct GrpcRouter {
44
45
46
47
    /// Centralized worker registry
    worker_registry: Arc<WorkerRegistry>,
    /// Centralized policy registry
    policy_registry: Arc<PolicyRegistry>,
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    /// Load balancing policy
    policy: Arc<dyn LoadBalancingPolicy>,
    /// Tokenizer for handling text encoding/decoding
    tokenizer: Arc<dyn Tokenizer>,
    /// Reasoning parser factory for structured reasoning outputs
    reasoning_parser_factory: ParserFactory,
    /// Tool parser registry for function/tool calls
    tool_parser_registry: &'static ParserRegistry,
    /// Configuration
    timeout_secs: u64,
    interval_secs: u64,
    dp_aware: bool,
    api_key: Option<String>,
    retry_config: RetryConfig,
    circuit_breaker_config: CircuitBreakerConfig,
}
64
65

impl GrpcRouter {
66
67
68
69
    /// Create a new gRPC router
    pub async fn new(
        worker_urls: Vec<String>,
        policy: Arc<dyn LoadBalancingPolicy>,
70
        ctx: &Arc<crate::server::AppContext>,
71
72
73
74
    ) -> Result<Self, String> {
        // Update metrics
        RouterMetrics::set_active_workers(worker_urls.len());

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        // Extract necessary components from context
        let tokenizer = ctx
            .tokenizer
            .as_ref()
            .ok_or_else(|| "gRPC router requires tokenizer".to_string())?
            .clone();
        let reasoning_parser_factory = ctx
            .reasoning_parser_factory
            .as_ref()
            .ok_or_else(|| "gRPC router requires reasoning parser factory".to_string())?
            .clone();
        let tool_parser_registry = ctx
            .tool_parser_registry
            .ok_or_else(|| "gRPC router requires tool parser registry".to_string())?;

90
        // Convert config CircuitBreakerConfig to core CircuitBreakerConfig
91
        let circuit_breaker_config = ctx.router_config.effective_circuit_breaker_config();
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        let core_cb_config = CircuitBreakerConfig {
            failure_threshold: circuit_breaker_config.failure_threshold,
            success_threshold: circuit_breaker_config.success_threshold,
            timeout_duration: Duration::from_secs(circuit_breaker_config.timeout_duration_secs),
            window_duration: Duration::from_secs(circuit_breaker_config.window_duration_secs),
        };

        // Create gRPC clients for each worker
        let mut grpc_clients = HashMap::new();
        for url in &worker_urls {
            match SglangSchedulerClient::connect(url).await {
                Ok(client) => {
                    grpc_clients.insert(url.clone(), client);
                    info!("Connected to gRPC worker at {}", url);
                }
                Err(e) => {
                    warn!("Failed to connect to gRPC worker at {}: {}", url, e);
                    // Continue with other workers
                }
            }
        }

        if grpc_clients.is_empty() {
            return Err("Failed to connect to any gRPC workers".to_string());
        }

118
119
120
        // Get registries from context
        let worker_registry = ctx.worker_registry.clone();
        let policy_registry = ctx.policy_registry.clone();
Chang Su's avatar
Chang Su committed
121

122
        // Create Worker trait objects with gRPC connection mode and register them
Chang Su's avatar
Chang Su committed
123
124
        for url in &worker_urls {
            if let Some(client) = grpc_clients.remove(url) {
125
126
127
128
129
130
131
132
133
134
135
136
137
                let worker = BasicWorkerBuilder::new(url.clone())
                    .worker_type(WorkerType::Regular)
                    .connection_mode(crate::core::ConnectionMode::Grpc { port: None })
                    .circuit_breaker_config(core_cb_config.clone())
                    .health_config(HealthConfig {
                        timeout_secs: ctx.router_config.health_check.timeout_secs,
                        check_interval_secs: ctx.router_config.health_check.check_interval_secs,
                        endpoint: ctx.router_config.health_check.endpoint.clone(),
                        failure_threshold: ctx.router_config.health_check.failure_threshold,
                        success_threshold: ctx.router_config.health_check.success_threshold,
                    })
                    .grpc_client(client)
                    .build();
Chang Su's avatar
Chang Su committed
138

139
140
                // Register worker in the centralized registry
                worker_registry.register(Arc::new(worker));
Chang Su's avatar
Chang Su committed
141
142
143
144
            } else {
                warn!("No gRPC client for worker {}, skipping", url);
            }
        }
145

146
147
148
149
150
151
152
153
        // Get only gRPC workers from registry for policy initialization
        let workers = worker_registry.get_workers_filtered(
            None, // any model
            Some(WorkerType::Regular),
            Some(crate::core::ConnectionMode::Grpc { port: None }),
            false, // include unhealthy workers during initialization
        );

154
155
156
157
158
159
160
161
        // Initialize policy with workers if needed
        if let Some(cache_aware) = policy
            .as_any()
            .downcast_ref::<crate::policies::CacheAwarePolicy>()
        {
            cache_aware.init_workers(&workers);
        }

162
        // No need for local health checkers - WorkerRegistry handles health checking
163
164

        Ok(GrpcRouter {
165
166
            worker_registry,
            policy_registry,
167
168
169
170
            policy,
            tokenizer,
            reasoning_parser_factory,
            tool_parser_registry,
171
172
173
174
175
            timeout_secs: ctx.router_config.worker_startup_timeout_secs,
            interval_secs: ctx.router_config.worker_startup_check_interval_secs,
            dp_aware: ctx.router_config.dp_aware,
            api_key: ctx.router_config.api_key.clone(),
            retry_config: ctx.router_config.effective_retry_config(),
176
177
178
            circuit_breaker_config: core_cb_config,
        })
    }
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

    // ============ Chat Implementation ============

    /// Main route_chat implementation
    async fn route_chat_impl(
        &self,
        _headers: Option<&HeaderMap>,
        body: &ChatCompletionRequest,
        model_id: Option<&str>,
    ) -> Response {
        debug!(
            "Processing chat completion request for model: {:?}",
            model_id
        );

        // Step 1: Select worker (fail fast if no workers available)
        let worker = match self.select_worker_for_request(model_id, None) {
            Some(w) => w,
            None => {
                warn!("No available workers for model: {:?}", model_id);
                return (StatusCode::SERVICE_UNAVAILABLE, "No available workers").into_response();
            }
        };

        debug!("Selected worker: {}", worker.url());

        // Step 2: Get gRPC client for worker (fail fast if can't connect)
        let client = match self.get_or_create_grpc_client(worker.url()).await {
            Ok(c) => c,
            Err(e) => {
                error!("Failed to get gRPC client: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Failed to get gRPC client: {}", e),
                )
                    .into_response();
            }
        };

        // Step 3: Process messages and apply chat template
        let processed_messages = match self.process_chat_messages(body) {
            Ok(msgs) => msgs,
            Err(e) => {
                error!("Failed to process chat messages: {}", e);
                return (StatusCode::BAD_REQUEST, e.to_string()).into_response();
            }
        };

        // Step 4: Tokenize the processed text
        let encoding = match self.tokenizer.encode(&processed_messages.text) {
            Ok(encoding) => encoding,
            Err(e) => {
                error!("Tokenization failed: {}", e);
                return (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    format!("Tokenization failed: {}", e),
                )
                    .into_response();
            }
        };

        let token_ids = encoding.token_ids().to_vec();
        debug!("Tokenized {} tokens from input", token_ids.len());

        // Step 5: Build tool constraints if needed
244
        let tool_call_constraint = if let Some(tools) = &body.tools {
245
246
247
248
249
250
            self.generate_tool_constraints(tools, &body.tool_choice, &body.model)
        } else {
            None
        };

        // Step 6: Build SamplingParams for gRPC
251
        let sampling_params = match self.build_grpc_sampling_params(body, tool_call_constraint) {
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
            Ok(params) => params,
            Err(e) => {
                error!("Failed to build sampling parameters: {}", e);
                return (
                    StatusCode::BAD_REQUEST,
                    format!("Invalid sampling parameters: {}", e),
                )
                    .into_response();
            }
        };

        // Step 7: Create GenerateRequest
        let grpc_request = proto::GenerateRequest {
            request_id: format!("chatcmpl-{}", Uuid::new_v4()),
            tokenized: Some(proto::TokenizedInput {
                original_text: processed_messages.text.clone(),
                input_ids: token_ids.into_iter().map(|id| id as i32).collect(),
            }),
            mm_inputs: processed_messages.multimodal_inputs,
            sampling_params: Some(sampling_params),
            return_logprob: body.logprobs,
            logprob_start_len: -1,
            top_logprobs_num: body.top_logprobs.unwrap_or(0) as i32,
            return_hidden_states: body.return_hidden_states,
            ..Default::default()
        };

        // Step 8: Handle streaming vs non-streaming
        if body.stream {
            self.handle_streaming_chat(client, grpc_request, body).await
        } else {
            self.handle_non_streaming_chat(client, grpc_request, body)
                .await
        }
    }

    // ============ Helper Methods ============
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    /// Select a worker for the request
    fn select_worker_for_request(
        &self,
        model_id: Option<&str>,
        text: Option<&str>,
    ) -> Option<Arc<dyn crate::core::Worker>> {
        // Get workers for the specified model, filtered by connection mode
        let workers = self.worker_registry.get_workers_filtered(
            model_id,
            Some(WorkerType::Regular),
            Some(crate::core::ConnectionMode::Grpc { port: None }),
            false, // get all workers, we'll filter by is_available() next
        );

        // Filter by availability (health + circuit breaker)
        let available: Vec<Arc<dyn crate::core::Worker>> = workers
            .iter()
            .filter(|w| w.is_available())
            .cloned()
            .collect();

        if available.is_empty() {
            return None;
        }

        // Get the appropriate policy for this model
        let policy = match model_id {
            Some(model) => self.policy_registry.get_policy_or_default(model),
            None => self.policy_registry.get_default_policy(),
        };

        // Select worker using the policy
        let idx = policy.select_worker(&available, text)?;
        Some(available[idx].clone())
    }
324
325
326
327
328
329
330
331
332
333
334
335

    /// Process chat messages and apply template
    fn process_chat_messages(
        &self,
        request: &ChatCompletionRequest,
    ) -> Result<ProcessedMessages, String> {
        // Use the tokenizer's chat template - we require HuggingFace tokenizer for gRPC
        let formatted_text = if let Some(hf_tokenizer) =
            self.tokenizer
                .as_any()
                .downcast_ref::<crate::tokenizer::HuggingFaceTokenizer>()
        {
336
337
            // Get content format and transform messages accordingly
            let content_format = hf_tokenizer.chat_template_content_format();
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
            let mut transformed_messages =
                Self::process_content_format(&request.messages, content_format)?;

            // Process tool call arguments in assistant messages
            Self::process_tool_call_arguments(&mut transformed_messages)?;

            // Convert tools to JSON values for template processing
            let tools_json: Option<Vec<serde_json::Value>> = request
                .tools
                .as_ref()
                .map(|tools| {
                    tools
                        .iter()
                        .map(serde_json::to_value)
                        .collect::<Result<Vec<_>, _>>()
                })
                .transpose()
                .map_err(|e| format!("Failed to serialize tools: {}", e))?;

            // Build template kwargs, merging reasoning_effort if present
            let mut combined_template_kwargs = std::collections::HashMap::new();

            // Add reasoning_effort if present (like Python does)
            if let Some(reasoning_effort) = &request.reasoning_effort {
                combined_template_kwargs.insert(
                    "reasoning_effort".to_string(),
                    serde_json::Value::String(reasoning_effort.clone()),
                );
            }

            // Add any additional template kwargs from request
            if let Some(template_kwargs) = &request.chat_template_kwargs {
                for (key, value) in template_kwargs {
                    combined_template_kwargs.insert(key.clone(), value.clone());
                }
            }

            let final_template_kwargs = if combined_template_kwargs.is_empty() {
                None
            } else {
                Some(&combined_template_kwargs)
            };

            let params = ChatTemplateParams {
                add_generation_prompt: true,
                continue_final_message: request.continue_final_message,
                tools: tools_json.as_deref(),
                template_kwargs: final_template_kwargs,
                ..Default::default()
            };

            // Handle assistant prefix for continue_final_message
            let assistant_prefix = if request.continue_final_message
                && !transformed_messages.is_empty()
                && transformed_messages
                    .last()
                    .and_then(|msg| msg.get("role"))
                    .and_then(|v| v.as_str())
                    == Some("assistant")
            {
                // Pop the last message to handle it separately
                let last_msg = transformed_messages.pop().unwrap();
                last_msg
                    .get("content")
                    .and_then(|v| v.as_str())
                    .map(|s| s.to_string())
            } else {
                None
            };

            // Apply chat template with the (now possibly shorter) list of messages
            let rendered = hf_tokenizer
                .apply_chat_template(&transformed_messages, params)
                .map_err(|e| format!("Failed to apply chat template: {}", e))?;
412

413
414
415
416
417
418
            // Append assistant prefix if we have one
            if let Some(prefix) = assistant_prefix {
                format!("{}{}", rendered, prefix)
            } else {
                rendered
            }
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
        } else {
            return Err(
                "gRPC router requires HuggingFace tokenizer with chat template support".to_string(),
            );
        };

        // Placeholder for multimodal inputs
        let multimodal_inputs = None;

        Ok(ProcessedMessages {
            text: formatted_text,
            multimodal_inputs,
            stop_sequences: request.stop.clone(),
        })
    }

435
436
    /// Process messages based on content format for ANY message type
    fn process_content_format(
437
438
439
440
441
442
443
444
445
446
447
448
449
        messages: &[crate::protocols::spec::ChatMessage],
        content_format: crate::tokenizer::chat_template::ChatTemplateContentFormat,
    ) -> Result<Vec<serde_json::Value>, String> {
        messages
            .iter()
            .map(|message| {
                let mut message_json = serde_json::to_value(message)
                    .map_err(|e| format!("Failed to serialize message: {}", e))?;

                if let Some(obj) = message_json.as_object_mut() {
                    if let Some(content_value) = obj.get_mut("content") {
                        Self::transform_content_field(content_value, content_format);
                    }
450
                }
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

                Ok(message_json)
            })
            .collect()
    }

    /// Transform a single content field based on content format
    fn transform_content_field(
        content_value: &mut Value,
        content_format: ChatTemplateContentFormat,
    ) {
        let Some(content_array) = content_value.as_array() else {
            return; // Not multimodal, keep as-is
        };

        match content_format {
            ChatTemplateContentFormat::String => {
                // Extract and join text parts only
                let text_parts: Vec<String> = content_array
                    .iter()
                    .filter_map(|part| {
                        part.as_object()?
                            .get("type")?
                            .as_str()
                            .filter(|&t| t == "text")
                            .and_then(|_| part.as_object()?.get("text")?.as_str())
                            .map(String::from)
                    })
                    .collect();

                if !text_parts.is_empty() {
                    *content_value = Value::String(text_parts.join(" "));
483
                }
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
            }
            ChatTemplateContentFormat::OpenAI => {
                // Replace media URLs with simple type placeholders
                let processed_parts: Vec<Value> = content_array
                    .iter()
                    .map(|part| {
                        part.as_object()
                            .and_then(|obj| obj.get("type")?.as_str())
                            .and_then(|type_str| match type_str {
                                "image_url" => Some(serde_json::json!({"type": "image"})),
                                "video_url" => Some(serde_json::json!({"type": "video"})),
                                "audio_url" => Some(serde_json::json!({"type": "audio"})),
                                _ => None,
                            })
                            .unwrap_or_else(|| part.clone())
                    })
                    .collect();
501

502
503
504
                *content_value = Value::Array(processed_parts);
            }
        }
505
506
    }

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    /// Process tool call arguments in messages
    /// Per Transformers docs, tool call arguments in assistant messages should be dicts
    fn process_tool_call_arguments(messages: &mut [serde_json::Value]) -> Result<(), String> {
        for msg in messages {
            // Early return if not assistant message
            let role = msg.get("role").and_then(|v| v.as_str());
            if role != Some("assistant") {
                continue;
            }

            // Early return if no tool_calls
            let Some(tool_calls) = msg.get_mut("tool_calls").and_then(|tc| tc.as_array_mut())
            else {
                continue;
            };

            // Process each tool call's arguments
            for call in tool_calls {
                let Some(function) = call.get_mut("function") else {
                    continue;
                };
                let Some(args) = function.get_mut("arguments") else {
                    continue;
                };
                let Some(args_str) = args.as_str() else {
                    continue;
                };

                // Parse JSON string to object (like Python json.loads)
                match serde_json::from_str::<serde_json::Value>(args_str) {
                    Ok(parsed) => *args = parsed,
                    Err(e) => {
                        return Err(format!(
                            "Failed to parse tool call arguments as JSON: '{}'. Error: {}",
                            args_str, e
                        ))
                    }
                }
            }
        }
        Ok(())
    }

550
551
552
553
    /// Build gRPC SamplingParams from OpenAI request
    fn build_grpc_sampling_params(
        &self,
        request: &ChatCompletionRequest,
554
        tool_call_constraint: Option<(String, String)>,
555
556
557
558
559
560
561
562
563
564
565
    ) -> Result<proto::SamplingParams, String> {
        let stop_sequences = self.extract_stop_strings(request);

        // Handle max tokens: prefer max_completion_tokens (new) over max_tokens (deprecated)
        // If neither is specified, use None to let the backend decide the default
        #[allow(deprecated)]
        let max_new_tokens = request
            .max_completion_tokens
            .or(request.max_tokens)
            .map(|v| v as i32);

566
567
568
569
570
571
572
573
574
575
576
577
578
        // Handle skip_special_tokens: set to false if tools are present and tool_choice is not "none"
        let skip_special_tokens = if request.tools.is_some() {
            match &request.tool_choice {
                Some(crate::protocols::spec::ToolChoice::Value(
                    crate::protocols::spec::ToolChoiceValue::None,
                )) => request.skip_special_tokens,
                Some(_) => false, // tool_choice is not "none"
                None => false, // TODO: this assumes tool_choice defaults to "auto" when tools present
            }
        } else {
            request.skip_special_tokens
        };

579
580
581
582
583
584
585
586
587
588
589
590
        #[allow(deprecated)]
        Ok(proto::SamplingParams {
            temperature: request.temperature.unwrap_or(1.0),
            top_p: request.top_p.unwrap_or(1.0),
            top_k: request.top_k.unwrap_or(-1),
            min_p: request.min_p.unwrap_or(0.0),
            frequency_penalty: request.frequency_penalty.unwrap_or(0.0),
            presence_penalty: request.presence_penalty.unwrap_or(0.0),
            repetition_penalty: request.repetition_penalty.unwrap_or(1.0),
            max_new_tokens,
            stop: stop_sequences,
            stop_token_ids: request.stop_token_ids.clone().unwrap_or_default(),
591
            skip_special_tokens,
592
            n: request.n.unwrap_or(1) as i32,
593
            constraint: self.build_constraint(request, tool_call_constraint)?,
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
            ..Default::default()
        })
    }

    /// Extract stop strings from request
    fn extract_stop_strings(&self, request: &ChatCompletionRequest) -> Vec<String> {
        match &request.stop {
            Some(StringOrArray::String(s)) => vec![s.clone()],
            Some(StringOrArray::Array(arr)) => arr.clone(),
            None => vec![],
        }
    }

    /// Build constraint for structured generation
    fn build_constraint(
        &self,
        request: &ChatCompletionRequest,
611
        tool_call_constraint: Option<(String, String)>,
612
    ) -> Result<Option<proto::sampling_params::Constraint>, String> {
613
614
        let mut constraints = Vec::new();

615
616
617
        if let Some(ResponseFormat::JsonSchema { json_schema }) = &request.response_format {
            let schema_str = serde_json::to_string(&json_schema.schema)
                .map_err(|e| format!("Failed to serialize JSON schema: {}", e))?;
618
            constraints.push(proto::sampling_params::Constraint::JsonSchema(schema_str));
619
620
621
        }

        if let Some(ebnf) = &request.ebnf {
622
            constraints.push(proto::sampling_params::Constraint::EbnfGrammar(
623
                ebnf.clone(),
624
            ));
625
626
627
        }

        if let Some(regex) = &request.regex {
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
            constraints.push(proto::sampling_params::Constraint::Regex(regex.clone()));
        }

        // Handle tool call constraint
        if let Some((constraint_type, constraint_value)) = tool_call_constraint {
            if !constraints.is_empty() {
                return Err("Constrained decoding is not compatible with tool calls.".to_string());
            }
            let tool_constraint = match constraint_type.as_str() {
                "structural_tag" => {
                    proto::sampling_params::Constraint::StructuralTag(constraint_value)
                }
                "json_schema" => proto::sampling_params::Constraint::JsonSchema(constraint_value),
                "ebnf" => proto::sampling_params::Constraint::EbnfGrammar(constraint_value),
                "regex" => proto::sampling_params::Constraint::Regex(constraint_value),
                _ => return Err(format!("Unknown constraint type: {}", constraint_type)),
            };
            constraints.push(tool_constraint);
646
647
        }

648
649
650
651
652
        match constraints.len() {
            0 => Ok(None),
            1 => Ok(constraints.pop()),
            _ => Err("Multiple constraints are not allowed.".to_string()),
        }
653
654
655
656
657
658
659
660
    }

    /// Generate tool constraints for structured generation
    fn generate_tool_constraints(
        &self,
        _tools: &[crate::protocols::spec::Tool],
        _tool_choice: &Option<crate::protocols::spec::ToolChoice>,
        model: &str,
661
    ) -> Option<(String, String)> {
662
        let _parser = self.tool_parser_registry.get_parser(model)?;
663
664
        // TODO: Implement actual constraint generation logic
        // For now, return None as this is placeholder implementation
665
666
667
668
669
670
671
672
        None
    }

    /// Get or create a gRPC client for the worker
    async fn get_or_create_grpc_client(
        &self,
        worker_url: &str,
    ) -> Result<SglangSchedulerClient, String> {
673
        // TODO: move to worker
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        debug!("Creating new gRPC client for worker: {}", worker_url);
        SglangSchedulerClient::connect(worker_url)
            .await
            .map_err(|e| format!("Failed to connect to gRPC server: {}", e))
    }

    /// Placeholder for streaming handler (to be implemented in Phase 2)
    async fn handle_streaming_chat(
        &self,
        _client: SglangSchedulerClient,
        _request: proto::GenerateRequest,
        _original_request: &ChatCompletionRequest,
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED, "Streaming not yet implemented").into_response()
    }

    /// Placeholder for non-streaming handler (to be implemented in Phase 3)
    async fn handle_non_streaming_chat(
        &self,
        _client: SglangSchedulerClient,
        _request: proto::GenerateRequest,
        _original_request: &ChatCompletionRequest,
    ) -> Response {
        (
            StatusCode::NOT_IMPLEMENTED,
            "Non-streaming not yet implemented",
        )
            .into_response()
    }
703
704
705
706
}

impl std::fmt::Debug for GrpcRouter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
707
        let stats = self.worker_registry.stats();
708
        f.debug_struct("GrpcRouter")
709
            .field("workers_count", &stats.total_workers)
710
711
712
713
            .field("timeout_secs", &self.timeout_secs)
            .field("interval_secs", &self.interval_secs)
            .field("dp_aware", &self.dp_aware)
            .finish()
714
715
716
717
718
719
720
721
722
723
    }
}

#[async_trait]
impl RouterTrait for GrpcRouter {
    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    async fn health_generate(&self, _req: Request<Body>) -> Response {
724
725
726
727
728
729
        // TODO: Implement actual generation test for gRPC
        (
            StatusCode::NOT_IMPLEMENTED,
            "Health generate not yet implemented for gRPC",
        )
            .into_response()
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
    }

    async fn get_server_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_models(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn get_model_info(&self, _req: Request<Body>) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn route_generate(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::GenerateRequest,
748
        _model_id: Option<&str>,
749
750
751
752
753
754
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn route_chat(
        &self,
755
756
757
        headers: Option<&HeaderMap>,
        body: &crate::protocols::spec::ChatCompletionRequest,
        model_id: Option<&str>,
758
    ) -> Response {
759
        self.route_chat_impl(headers, body, model_id).await
760
761
762
763
764
765
    }

    async fn route_completion(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::CompletionRequest,
766
        _model_id: Option<&str>,
767
768
769
770
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

771
772
773
774
    async fn route_responses(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::ResponsesRequest,
775
        _model_id: Option<&str>,
776
777
778
779
    ) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

780
781
782
783
784
785
    async fn get_response(
        &self,
        _headers: Option<&HeaderMap>,
        _response_id: &str,
        _params: &crate::protocols::spec::ResponsesGetParams,
    ) -> Response {
786
787
788
789
790
791
792
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    async fn cancel_response(&self, _headers: Option<&HeaderMap>, _response_id: &str) -> Response {
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

793
794
795
796
797
798
    async fn route_embeddings(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::EmbeddingRequest,
        _model_id: Option<&str>,
    ) -> Response {
799
800
801
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

802
803
804
805
    async fn route_rerank(
        &self,
        _headers: Option<&HeaderMap>,
        _body: &crate::protocols::spec::RerankRequest,
806
        _model_id: Option<&str>,
807
    ) -> Response {
808
809
810
811
812
813
814
        (StatusCode::NOT_IMPLEMENTED).into_response()
    }

    fn router_type(&self) -> &'static str {
        "grpc"
    }
}
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

#[cfg(test)]
mod tests {
    use super::*;
    use crate::protocols::spec::{ChatMessage, ContentPart, ImageUrl, UserMessageContent};
    use crate::tokenizer::chat_template::ChatTemplateContentFormat;
    use serde_json::json;

    #[test]
    fn test_transform_messages_string_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Hello".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: None,
                    },
                },
                ContentPart::Text {
                    text: "World".to_string(),
                },
            ]),
            name: None,
        }];

844
845
846
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should flatten multimodal content to text only
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Hello World"
        );
        assert_eq!(transformed_message["role"].as_str().unwrap(), "user");
    }

    #[test]
    fn test_transform_messages_openai_format() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![
                ContentPart::Text {
                    text: "Describe this image:".to_string(),
                },
                ContentPart::ImageUrl {
                    image_url: ImageUrl {
                        url: "https://example.com/image.jpg".to_string(),
                        detail: Some("high".to_string()),
                    },
                },
            ]),
            name: None,
        }];

877
878
879
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should replace media URLs with simple type placeholders
        let content_array = transformed_message["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);

        // Text part should remain unchanged
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[0]["text"], "Describe this image:");

        // Image part should be replaced with simple type placeholder
        assert_eq!(content_array[1], json!({"type": "image"}));
    }

    #[test]
    fn test_transform_messages_simple_string_content() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Text("Simple text message".to_string()),
            name: None,
        }];

904
905
906
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Simple string content should remain unchanged
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Simple text message"
        );
    }

    #[test]
    fn test_transform_messages_assistant_message() {
        let messages = vec![ChatMessage::Assistant {
            role: "assistant".to_string(),
            content: Some("Assistant response".to_string()),
            name: None,
            tool_calls: None,
            function_call: None,
            reasoning_content: None,
        }];

929
930
931
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        assert_eq!(transformed_message["role"].as_str().unwrap(), "assistant");
        assert_eq!(
            transformed_message["content"].as_str().unwrap(),
            "Assistant response"
        );
    }

    #[test]
    fn test_transform_messages_multiple_messages() {
        let messages = vec![
            ChatMessage::System {
                role: "system".to_string(),
                content: "System prompt".to_string(),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "User message".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: None,
                        },
                    },
                ]),
                name: None,
            },
        ];

968
969
970
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995

        assert_eq!(result.len(), 2);

        // System message should remain unchanged
        assert_eq!(result[0]["role"].as_str().unwrap(), "system");
        assert_eq!(result[0]["content"].as_str().unwrap(), "System prompt");

        // User message should be flattened to text only
        assert_eq!(result[1]["role"].as_str().unwrap(), "user");
        assert_eq!(result[1]["content"].as_str().unwrap(), "User message");
    }

    #[test]
    fn test_transform_messages_empty_text_parts() {
        let messages = vec![ChatMessage::User {
            role: "user".to_string(),
            content: UserMessageContent::Parts(vec![ContentPart::ImageUrl {
                image_url: ImageUrl {
                    url: "https://example.com/image.jpg".to_string(),
                    detail: None,
                },
            }]),
            name: None,
        }];

996
997
998
        let result =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

        assert_eq!(result.len(), 1);
        let transformed_message = &result[0];

        // Should keep original multimodal content when no text parts exist
        assert!(transformed_message["content"].is_array());
    }

    #[test]
    fn test_transform_messages_mixed_content_types() {
        // Test with both text and multimodal content
        let messages = vec![
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Text("Plain text".to_string()),
                name: None,
            },
            ChatMessage::User {
                role: "user".to_string(),
                content: UserMessageContent::Parts(vec![
                    ContentPart::Text {
                        text: "With image".to_string(),
                    },
                    ContentPart::ImageUrl {
                        image_url: ImageUrl {
                            url: "https://example.com/image.jpg".to_string(),
                            detail: Some("low".to_string()),
                        },
                    },
                ]),
                name: None,
            },
        ];

        // Test String format
1034
1035
1036
        let result_string =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::String)
                .unwrap();
1037
1038
1039
1040
1041
1042

        assert_eq!(result_string.len(), 2);
        assert_eq!(result_string[0]["content"].as_str().unwrap(), "Plain text");
        assert_eq!(result_string[1]["content"].as_str().unwrap(), "With image");

        // Test OpenAI format
1043
1044
1045
        let result_openai =
            GrpcRouter::process_content_format(&messages, ChatTemplateContentFormat::OpenAI)
                .unwrap();
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

        assert_eq!(result_openai.len(), 2);
        assert_eq!(result_openai[0]["content"].as_str().unwrap(), "Plain text");

        let content_array = result_openai[1]["content"].as_array().unwrap();
        assert_eq!(content_array.len(), 2);
        assert_eq!(content_array[0]["type"], "text");
        assert_eq!(content_array[1], json!({"type": "image"}));
    }
}