__init__.py 11.1 KB
Newer Older
1
import ctypes
2
import logging
3
import os
4
import platform
EduardDurech's avatar
EduardDurech committed
5
6
import shutil
from pathlib import Path
7

8
9
import torch

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
logger = logging.getLogger(__name__)


def _get_compute_capability():
    """Get the compute capability of the current GPU."""
    if not torch.cuda.is_available():
        return None

    # Get the current device
    device = torch.cuda.current_device()
    properties = torch.cuda.get_device_properties(device)

    # Return as integer (major * 10 + minor)
    return properties.major * 10 + properties.minor


def _filter_compiled_extensions(file_list):
    """Filter and prioritize compiled extensions over Python source files."""
    compiled_extensions = [".so", ".pyd", ".dll"]  # Common compiled extension suffixes
    compiled_files = []
    other_files = []

    for file_path in file_list:
        path = Path(file_path)
        # Check if it's a compiled extension (including complex names like .abi3.so, .cpython-312.so)
        if any(
            str(path).endswith(ext) or ext in str(path) for ext in compiled_extensions
        ):
            compiled_files.append(file_path)
        else:
            other_files.append(file_path)

    # Return compiled files first, then others
    return compiled_files + other_files


def _load_architecture_specific_ops():
    """Load the appropriate common_ops library based on GPU architecture."""
    import importlib.util
    import sys
    from pathlib import Path

    compute_capability = _get_compute_capability()
    logger.debug(
        f"[sgl_kernel] GPU Detection: compute_capability = {compute_capability}"
    )

    # Get the directory where sgl_kernel is installed
    sgl_kernel_dir = Path(__file__).parent
    logger.debug(f"[sgl_kernel] sgl_kernel directory: {sgl_kernel_dir}")

    # Determine which version to load based on GPU architecture
    if compute_capability == 90:
        ops_subdir = "sm90"
        variant_name = "SM90 (Hopper/H100 with fast math optimization)"
    elif compute_capability is not None:
        ops_subdir = "sm100"
        variant_name = f"SM{compute_capability} (precise math for compatibility)"
    else:
        ops_subdir = "sm100"
        variant_name = "CPU/No GPU detected (using precise math)"

    # Look for the compiled module with any valid extension
    import glob

    ops_pattern = str(sgl_kernel_dir / ops_subdir / "common_ops.*")
    raw_matching_files = glob.glob(ops_pattern)
    matching_files = _filter_compiled_extensions(raw_matching_files)

    logger.debug(f"[sgl_kernel] Attempting to load {variant_name}")
    logger.debug(f"[sgl_kernel] Looking for library matching pattern: {ops_pattern}")
    logger.debug(f"[sgl_kernel] Found files: {raw_matching_files}")
    logger.debug(f"[sgl_kernel] Prioritized files: {matching_files}")

    # Try to load from the architecture-specific directory
    if matching_files:
        ops_path = Path(matching_files[0])  # Use the first prioritized file
        logger.debug(f"[sgl_kernel] Found architecture-specific library: {ops_path}")
        try:
            # Load the module from specific path using importlib
            spec = importlib.util.spec_from_file_location("common_ops", str(ops_path))
            if spec is None:
                raise ImportError(f"Could not create module spec for {ops_path}")

            common_ops = importlib.util.module_from_spec(spec)
            if spec.loader is None:
                raise ImportError(f"Module spec has no loader for {ops_path}")

            logger.debug(f"[sgl_kernel] Loading module from {ops_path}...")
            spec.loader.exec_module(common_ops)
            logger.debug(f"[sgl_kernel] ✓ Successfully loaded {variant_name}")
            logger.debug(f"[sgl_kernel] ✓ Module file: {common_ops.__file__}")
            return common_ops

        except Exception as e:
            logger.debug(
                f"[sgl_kernel] ✗ Failed to load from {ops_path}: {type(e).__name__}: {e}"
            )
            # Continue to fallback
    else:
        logger.debug(
            f"[sgl_kernel] ✗ Architecture-specific library not found matching pattern: {ops_pattern}"
        )

    # Try alternative directory (in case installation structure differs)
    alt_pattern = str(sgl_kernel_dir / "common_ops.*")
    raw_alt_files = glob.glob(alt_pattern)
    alt_matching_files = _filter_compiled_extensions(raw_alt_files)
    logger.debug(f"[sgl_kernel] Attempting fallback: looking for pattern {alt_pattern}")
    logger.debug(f"[sgl_kernel] Found fallback files: {raw_alt_files}")
    logger.debug(f"[sgl_kernel] Prioritized fallback files: {alt_matching_files}")

    if alt_matching_files:
        alt_path = Path(alt_matching_files[0])  # Use the first prioritized file
        logger.debug(f"[sgl_kernel] Found fallback library: {alt_path}")
        try:
            spec = importlib.util.spec_from_file_location("common_ops", str(alt_path))
            if spec is None:
                raise ImportError(f"Could not create module spec for {alt_path}")

            common_ops = importlib.util.module_from_spec(spec)
            if spec.loader is None:
                raise ImportError(f"Module spec has no loader for {alt_path}")

            logger.debug(f"[sgl_kernel] Loading fallback module from {alt_path}...")
            spec.loader.exec_module(common_ops)
            logger.debug(f"[sgl_kernel] ✓ Successfully loaded fallback library")
            logger.debug(f"[sgl_kernel] ✓ Module file: {common_ops.__file__}")
            return common_ops

        except Exception as e:
            logger.debug(
                f"[sgl_kernel] ✗ Failed to load fallback from {alt_path}: {type(e).__name__}: {e}"
            )
    else:
        logger.debug(
            f"[sgl_kernel] ✗ Fallback library not found matching pattern: {alt_pattern}"
        )

    # Final attempt: try standard Python import (for backward compatibility)
    logger.debug(
        f"[sgl_kernel] Final attempt: trying standard Python import 'common_ops'"
    )
    try:
        import common_ops

        logger.debug(f"[sgl_kernel] ✓ Successfully imported via standard Python import")
        logger.debug(f"[sgl_kernel] ✓ Module file: {common_ops.__file__}")
        return common_ops
    except ImportError as e:
        logger.debug(f"[sgl_kernel] ✗ Standard Python import failed: {e}")

    # All attempts failed
    error_msg = f"""
[sgl_kernel] CRITICAL: Could not load any common_ops library!

Attempted locations:
1. Architecture-specific pattern: {ops_pattern} - found files: {matching_files}
2. Fallback pattern: {alt_pattern} - found files: {alt_matching_files}
3. Standard Python import: common_ops - failed

GPU Info:
- Compute capability: {compute_capability}
- Expected variant: {variant_name}

Please ensure sgl_kernel is properly installed with:
pip install --upgrade sgl_kernel
"""
    logger.debug(error_msg)
    raise ImportError(error_msg)


# Initialize the ops library based on current GPU
logger.debug("[sgl_kernel] Initializing architecture-specific operator library...")
common_ops = _load_architecture_specific_ops()
logger.debug("[sgl_kernel] ✓ Operator library initialization complete")

187

EduardDurech's avatar
EduardDurech committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# copy & modify from torch/utils/cpp_extension.py
def _find_cuda_home():
    """Find the CUDA install path."""
    # Guess #1
    cuda_home = os.environ.get("CUDA_HOME") or os.environ.get("CUDA_PATH")
    if cuda_home is None:
        # Guess #2
        nvcc_path = shutil.which("nvcc")
        if nvcc_path is not None:
            cuda_home = os.path.dirname(os.path.dirname(nvcc_path))
        else:
            # Guess #3
            cuda_home = "/usr/local/cuda"
    return cuda_home


204
if torch.version.cuda is not None:
EduardDurech's avatar
EduardDurech committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    cuda_home = Path(_find_cuda_home())

    if (cuda_home / "lib").is_dir():
        cuda_path = cuda_home / "lib"
    elif (cuda_home / "lib64").is_dir():
        cuda_path = cuda_home / "lib64"
    else:
        # Search for 'libcudart.so.12' in subdirectories
        for path in cuda_home.rglob("libcudart.so.12"):
            cuda_path = path.parent
            break
        else:
            raise RuntimeError("Could not find CUDA lib directory.")

    cuda_include = (cuda_path / "libcudart.so.12").resolve()
    if cuda_include.exists():
        ctypes.CDLL(str(cuda_include), mode=ctypes.RTLD_GLOBAL)
222

223
from sgl_kernel.allreduce import *
224
225
226
227
from sgl_kernel.attention import (
    cutlass_mla_decode,
    cutlass_mla_get_workspace_size,
    lightning_attention_decode,
Yineng Zhang's avatar
Yineng Zhang committed
228
    merge_state,
229
    merge_state_v2,
230
)
231
from sgl_kernel.cutlass_moe import cutlass_w4a8_moe_mm, get_cutlass_w4a8_moe_mm_data
232
from sgl_kernel.elementwise import (
233
    FusedSetKVBufferArg,
234
    apply_rope_with_cos_sin_cache_inplace,
235
    concat_mla_absorb_q,
236
    concat_mla_k,
237
    copy_to_gpu_no_ce,
238
    downcast_fp8,
239
240
241
242
243
244
245
246
    fused_add_rmsnorm,
    gelu_and_mul,
    gelu_tanh_and_mul,
    gemma_fused_add_rmsnorm,
    gemma_rmsnorm,
    rmsnorm,
    silu_and_mul,
)
247
from sgl_kernel.fused_moe import fused_marlin_moe
248
from sgl_kernel.gemm import (
249
    awq_dequantize,
250
    bmm_fp8,
Trevor Morris's avatar
Trevor Morris committed
251
    cutlass_scaled_fp4_mm,
252
    dsv3_fused_a_gemm,
253
    dsv3_router_gemm,
254
255
    fp8_blockwise_scaled_mm,
    fp8_scaled_mm,
256
257
258
    gptq_gemm,
    gptq_marlin_gemm,
    gptq_shuffle,
259
    int8_scaled_mm,
HandH1998's avatar
HandH1998 committed
260
261
    qserve_w4a8_per_chn_gemm,
    qserve_w4a8_per_group_gemm,
262
    scaled_fp4_experts_quant,
263
    scaled_fp4_grouped_quant,
Trevor Morris's avatar
Trevor Morris committed
264
    scaled_fp4_quant,
265
    sgl_per_tensor_quant_fp8,
266
    sgl_per_token_group_quant_8bit,
267
    sgl_per_token_quant_fp8,
268
    shuffle_rows,
269
    silu_and_mul_scaled_fp4_grouped_quant,
270
)
271
from sgl_kernel.grammar import apply_token_bitmask_inplace_cuda
272
273
274
275
276
277
from sgl_kernel.kvcacheio import (
    transfer_kv_all_layer,
    transfer_kv_all_layer_mla,
    transfer_kv_per_layer,
    transfer_kv_per_layer_mla,
)
278
from sgl_kernel.mamba import causal_conv1d_fwd, causal_conv1d_update
279
280
281
282
283
from sgl_kernel.marlin import (
    awq_marlin_moe_repack,
    awq_marlin_repack,
    gptq_marlin_repack,
)
284
from sgl_kernel.memory import set_kv_buffer_kernel
285
from sgl_kernel.moe import (
286
    apply_shuffle_mul_sum,
287
    cutlass_fp4_group_mm,
288
289
290
    fp8_blockwise_scaled_grouped_mm,
    moe_align_block_size,
    moe_fused_gate,
291
    moe_sum,
292
    moe_sum_reduce,
293
    prepare_moe_input,
294
295
    topk_softmax,
)
296
297
298
299
300
301
302
303
from sgl_kernel.quantization import (
    ggml_dequantize,
    ggml_moe_a8,
    ggml_moe_a8_vec,
    ggml_moe_get_block_size,
    ggml_mul_mat_a8,
    ggml_mul_mat_vec_a8,
)
304
from sgl_kernel.sampling import (
305
    min_p_sampling_from_probs,
306
    top_k_mask_logits,
307
    top_k_renorm_prob,
308
    top_k_top_p_sampling_from_logits,
309
310
311
312
    top_k_top_p_sampling_from_probs,
    top_p_renorm_prob,
    top_p_sampling_from_probs,
)
313
314
from sgl_kernel.speculative import (
    build_tree_kernel_efficient,
315
    reconstruct_indices_from_tree_mask,
316
317
318
319
    segment_packbits,
    tree_speculative_sampling_target_only,
    verify_tree_greedy,
)
320
from sgl_kernel.top_k import fast_topk, fast_topk_transform_fused, fast_topk_v2
321
from sgl_kernel.version import __version__
322

323
324
325
if torch.version.hip is not None:
    from sgl_kernel.elementwise import gelu_quick

326
327
328
329
330
331
332
333
334
335
336

def create_greenctx_stream_by_value(*args, **kwargs):
    from sgl_kernel.spatial import create_greenctx_stream_by_value as _impl

    return _impl(*args, **kwargs)


def get_sm_available(*args, **kwargs):
    from sgl_kernel.spatial import get_sm_available as _impl

    return _impl(*args, **kwargs)