common_extension.cc 25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
15
#include <ATen/core/dispatch/Dispatcher.h>
16
#include <torch/all.h>
17
18
#include <torch/library.h>

19
#include "sgl_kernel_ops.h"
20

21
TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
22
23
24
  /*
   * From csrc/allreduce
   */
25
26
27
  m.def("get_graph_buffer_ipc_meta", &get_graph_buffer_ipc_meta);
  m.def("register_graph_buffers", &register_graph_buffers);
  m.def("dispose", &dispose);
28
29
  m.def("meta_size", &meta_size);
  m.def("register_buffer", &register_buffer);
30
31

  m.def(
32
33
      "init_custom_ar(int[] ipc_tensors, Tensor rank_data, "
      "int rank, bool full_nvlink) -> int");
34
35
  m.impl("init_custom_ar", torch::kCUDA, &init_custom_ar);

36
37
38
  m.def(
      "all_reduce(int fa, Tensor inp, Tensor! out, int reg_buffer, "
      "int reg_buffer_sz_bytes) -> ()");
39
  m.impl("all_reduce", torch::kCUDA, &all_reduce);
40
41
42
43
44
45
46
47
48

  m.def("mscclpp_generate_unique_id", &mscclpp_generate_unique_id);
  m.def(
      "mscclpp_init_context(Tensor unique_id, int rank, int world_size, Tensor scratch, Tensor put_buffer, "
      "int nranks_per_node, int[] rank_to_node, int[] rank_to_ib, int context_selection) -> int");
  m.impl("mscclpp_init_context", torch::kCUDA, &mscclpp_init_context);

  m.def("mscclpp_allreduce(int context, Tensor inp, Tensor! out, int nthreads, int nblocks) -> ()");
  m.impl("mscclpp_allreduce", torch::kCUDA, &mscclpp_allreduce);
Lianmin Zheng's avatar
Lianmin Zheng committed
49

50
51
52
  /*
   * From csrc/attention
   */
53
54
55
56
  m.def(
      "lightning_attention_decode(Tensor q, Tensor k, Tensor v, Tensor past_kv, Tensor slope, Tensor! output, Tensor! "
      "new_kv) -> ()");
  m.impl("lightning_attention_decode", torch::kCUDA, &lightning_attention_decode);
Yineng Zhang's avatar
Yineng Zhang committed
57
58
  m.def("merge_state(Tensor v_a, Tensor s_a, Tensor v_b, Tensor s_b, Tensor! v_merged, Tensor! s_merged) -> ()");
  m.impl("merge_state", torch::kCUDA, &merge_state);
59
60
  m.def("merge_state_v2(Tensor v_a, Tensor s_a, Tensor v_b, Tensor s_b, Tensor! v_merged, Tensor! s_merged) -> ()");
  m.impl("merge_state_v2", torch::kCUDA, &merge_state_v2);
61
  m.def(
62
      "cutlass_mla_decode(Tensor! out, Tensor q_nope, Tensor q_pe, Tensor kv_c_and_k_pe_cache, Tensor seq_lens, Tensor "
63
      "page_table, Tensor! workspace, float sm_scale, int num_kv_splits) -> ()");
64
65
  m.impl("cutlass_mla_decode", torch::kCUDA, &cutlass_mla_decode);
  m.def("cutlass_mla_get_workspace_size", &cutlass_mla_get_workspace_size);
66

67
68
69
  /*
   * From csrc/elementwise
   */
70
  m.def("rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, bool enable_pdl) -> ()");
71
72
  m.impl("rmsnorm", torch::kCUDA, &rmsnorm);

73
  m.def("fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, bool enable_pdl) -> ()");
74
75
  m.impl("fused_add_rmsnorm", torch::kCUDA, &sgl_fused_add_rmsnorm);

76
  m.def("gemma_rmsnorm(Tensor! output, Tensor input, Tensor weight, float eps, bool enable_pdl) -> ()");
77
78
  m.impl("gemma_rmsnorm", torch::kCUDA, &gemma_rmsnorm);

79
  m.def("gemma_fused_add_rmsnorm(Tensor! input, Tensor! residual, Tensor weight, float eps, bool enable_pdl) -> ()");
80
81
  m.impl("gemma_fused_add_rmsnorm", torch::kCUDA, &gemma_fused_add_rmsnorm);

82
  m.def("silu_and_mul(Tensor! out, Tensor input) -> ()");
83
84
  m.impl("silu_and_mul", torch::kCUDA, &silu_and_mul);

85
  m.def("gelu_tanh_and_mul(Tensor! out, Tensor input) -> ()");
86
87
  m.impl("gelu_tanh_and_mul", torch::kCUDA, &gelu_tanh_and_mul);

88
  m.def("gelu_and_mul(Tensor! out, Tensor input) -> ()");
89
90
91
92
  m.impl("gelu_and_mul", torch::kCUDA, &gelu_and_mul);

  m.def(
      "apply_rope_pos_ids_cos_sin_cache(Tensor q, Tensor k, Tensor! q_rope, Tensor! k_rope, Tensor cos_sin_cache, "
93
      "Tensor pos_ids, bool interleave, bool enable_pdl, int cuda_stream, "
94
      "Tensor? v, Tensor!? k_buffer, Tensor!? v_buffer, Tensor? kv_cache_loc) -> ()");
95
  m.impl("apply_rope_pos_ids_cos_sin_cache", torch::kCUDA, &apply_rope_pos_ids_cos_sin_cache);
96

97
98
99
100
101
  m.def(
      "downcast_fp8(Tensor k, Tensor v, Tensor k_out, Tensor v_out, Tensor k_scale, Tensor v_scale, Tensor loc, int "
      "mult, int offset, int cuda_stream) -> ()");
  m.impl("downcast_fp8", torch::kCUDA, &downcast_fp8);

102
103
104
105
106
  m.def("copy_to_gpu_no_ce(Tensor input, Tensor! output) -> ()");
  m.impl("copy_to_gpu_no_ce", torch::kCUDA, &copy_to_gpu_no_ce);
  m.def("concat_mla_k(Tensor! k, Tensor k_nope, Tensor k_rope) -> ()");
  m.impl("concat_mla_k", torch::kCUDA, &concat_mla_k);

107
108
109
  m.def("concat_mla_absorb_q(Tensor a, Tensor b, Tensor! out) -> ()");
  m.impl("concat_mla_absorb_q", torch::kCUDA, &concat_mla_absorb_q);

110
111
112
113
114
115
116
  m.def("fast_topk(Tensor score, Tensor indices, Tensor lengths) -> ()");
  m.impl("fast_topk", torch::kCUDA, &fast_topk_interface);
  m.def(
      "fast_topk_transform_fused(Tensor score, Tensor lengths, Tensor dst_page_table, Tensor src_page_table, Tensor "
      "cu_seqlens_q) -> ()");
  m.impl("fast_topk_transform_fused", torch::kCUDA, &fast_topk_transform_interface);

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  /*
   * From gguf quantiztion
   */
  m.def(
      "ggml_dequantize(Tensor W, int type, SymInt m, SymInt n, ScalarType? "
      "dtype) -> Tensor");
  m.impl("ggml_dequantize", torch::kCUDA, &ggml_dequantize);

  m.def(
      "ggml_mul_mat_vec_a8(Tensor W, Tensor X, int type, SymInt row) "
      "-> Tensor");
  m.impl("ggml_mul_mat_vec_a8", torch::kCUDA, &ggml_mul_mat_vec_a8);

  m.def("ggml_mul_mat_a8(Tensor W, Tensor X, int type, SymInt row) -> Tensor");
  m.impl("ggml_mul_mat_a8", torch::kCUDA, &ggml_mul_mat_a8);

  m.def(
      "ggml_moe_a8(Tensor X, Tensor W, "
      "Tensor sorted_token_ids, Tensor expert_ids, Tensor "
      "num_tokens_post_padded, "
      "int type, SymInt row, SymInt top_k, SymInt tokens) -> Tensor");
  m.impl("ggml_moe_a8", torch::kCUDA, &ggml_moe_a8);

  m.def(
      "ggml_moe_a8_vec(Tensor X, Tensor W, "
      "Tensor topk_ids, int top_k, "
      "int type, SymInt row, SymInt tokens) -> Tensor");
  m.impl("ggml_moe_a8_vec", torch::kCUDA, &ggml_moe_a8_vec);

  m.def("ggml_moe_get_block_size", &ggml_moe_get_block_size);

148
149
150
  /*
   * From csrc/gemm
   */
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  m.def("awq_dequantize(Tensor qweight, Tensor scales, Tensor qzeros) -> Tensor");
  m.impl("awq_dequantize", torch::kCUDA, &awq_dequantize);

  m.def(
      "int8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("int8_scaled_mm", torch::kCUDA, &int8_scaled_mm);

  m.def(
      "fp8_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype, Tensor? "
      "bias) -> Tensor");
  m.impl("fp8_scaled_mm", torch::kCUDA, &fp8_scaled_mm);

  m.def(
      "fp8_blockwise_scaled_mm(Tensor mat_a, Tensor mat_b, Tensor scales_a, Tensor scales_b, ScalarType out_dtype) -> "
      "Tensor");
  m.impl("fp8_blockwise_scaled_mm", torch::kCUDA, &fp8_blockwise_scaled_mm);

  m.def(
170
      "sgl_per_token_group_quant_8bit(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
171
      " float eps, float fp8_min, float fp8_max, bool scale_ue8m0) -> ()");
172
  m.impl("sgl_per_token_group_quant_8bit", torch::kCUDA, &sgl_per_token_group_quant_8bit);
173
174

  m.def(
175
176
177
      "sgl_per_token_group_quant_8bit_v2(Tensor input, Tensor output_q, Tensor output_s, int group_size,"
      " float eps, float fp8_min, float fp8_max, bool scale_ue8m0, bool fuse_silu_and_mul, Tensor? masked_m) -> ()");
  m.impl("sgl_per_token_group_quant_8bit_v2", torch::kCUDA, &sgl_per_token_group_quant_8bit_v2);
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

  m.def("sgl_per_tensor_quant_fp8(Tensor input, Tensor output_q, Tensor output_s, bool is_static) -> ()");
  m.impl("sgl_per_tensor_quant_fp8", torch::kCUDA, &sgl_per_tensor_quant_fp8);

  m.def("sgl_per_token_quant_fp8(Tensor input, Tensor output_q, Tensor output_s) -> ()");
  m.impl("sgl_per_token_quant_fp8", torch::kCUDA, &sgl_per_token_quant_fp8);

  m.def(
      "cutlass_scaled_fp4_mm(Tensor! out, Tensor a, Tensor b,"
      "                      Tensor block_scale_a, Tensor block_scale_b,"
      "                      Tensor alpha) -> ()");
  m.impl("cutlass_scaled_fp4_mm", torch::kCUDA, &cutlass_scaled_fp4_mm);

  m.def(
      "scaled_fp4_quant(Tensor! output, Tensor! input,"
      "                 Tensor! output_scale, Tensor! input_scale) -> ()");
  m.impl("scaled_fp4_quant", torch::kCUDA, &scaled_fp4_quant);
Trevor Morris's avatar
Trevor Morris committed
195

196
197
198
  m.def("dsv3_fused_a_gemm(Tensor! output, Tensor mat_a, Tensor mat_b) -> ()");
  m.impl("dsv3_fused_a_gemm", torch::kCUDA, &dsv3_fused_a_gemm);

199
200
201
202
203
204
205
  // Compute NVFP4 experts quantization.
  m.def(
      "scaled_fp4_experts_quant(Tensor! output, Tensor! output_scale,"
      "Tensor input, Tensor input_global_scale, Tensor input_offset_by_experts,"
      "Tensor output_scale_offset_by_experts) -> ()");
  m.impl("scaled_fp4_experts_quant", torch::kCUDA, &scaled_fp4_experts_quant);

206
207
  m.def(
      "silu_and_mul_scaled_fp4_experts_quant(Tensor! output, Tensor! output_scale,"
208
      "Tensor input, Tensor input_global_scale, Tensor mask, bool use_silu_and_mul) -> ()");
209
210
  m.impl("silu_and_mul_scaled_fp4_experts_quant", torch::kCUDA, &silu_and_mul_scaled_fp4_experts_quant);

211
212
213
214
215
216
217
  m.def(
      "cutlass_fp4_group_mm(Tensor! output, Tensor a, Tensor b,"
      "Tensor a_blockscale, Tensor b_blockscale, Tensor alphas,"
      "Tensor ab_strides, Tensor c_strides, Tensor problem_sizes,"
      " Tensor expert_offsets, Tensor sf_offsets) -> ()");
  m.impl("cutlass_fp4_group_mm", torch::kCUDA, &cutlass_fp4_group_mm);

218
219
220
  m.def("dsv3_router_gemm(Tensor! output, Tensor mat_a, Tensor mat_b) -> ()");
  m.impl("dsv3_router_gemm", torch::kCUDA, &dsv3_router_gemm);

221
222
223
  /*
   * From csrc/gemm/gptq
   */
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
  m.def(
      "gptq_marlin_gemm(Tensor! a, Tensor? c_or_none,"
      "Tensor! b_q_weight, Tensor! b_scales, Tensor? global_scale_or_none,"
      "Tensor? b_zeros_or_none, Tensor? g_idx_or_none, Tensor? perm_or_none,"
      "Tensor! workspace, int b_q_type_id, int size_m, int size_n, int size_k,"
      "bool is_k_full, bool use_atomic_add, bool use_fp32_reduce, bool is_zp_float) -> Tensor");
  m.impl("gptq_marlin_gemm", torch::kCUDA, &gptq_marlin_gemm);

  m.def(
      "gptq_gemm(Tensor a, Tensor b_q_weight, Tensor b_gptq_qzeros, Tensor b_gptq_scales, Tensor b_g_idx, bool "
      "use_shuffle, int bit) -> Tensor");
  m.impl("gptq_gemm", torch::kCUDA, &gptq_gemm);

  m.def("gptq_shuffle(Tensor! q_weight, Tensor q_perm, int bit) -> ()");
  m.impl("gptq_shuffle", torch::kCUDA, &gptq_shuffle);

  m.def("gptq_marlin_repack(Tensor! b_q_weight, Tensor! perm, int size_k, int size_n, int num_bits) -> Tensor");
  m.impl("gptq_marlin_repack", torch::kCUDA, &gptq_marlin_repack);

  m.def("awq_marlin_repack(Tensor! b_q_weight, int size_k, int size_n, int num_bits) -> Tensor");
  m.impl("awq_marlin_repack", torch::kCUDA, &awq_marlin_repack);
245

246
247
248
  /*
   * From csrc/moe
   */
249
250
  m.def(
      "moe_align_block_size(Tensor topk_ids, int num_experts, int block_size, Tensor! sorted_token_ids, Tensor! "
251
      "experts_ids, Tensor! num_tokens_post_pad, Tensor! cumsum_buffer, bool "
252
      "pad_sorted_token_ids) -> ()");
253
254
  m.impl("moe_align_block_size", torch::kCUDA, &moe_align_block_size);

255
  m.def("topk_softmax(Tensor! topk_weights, Tensor! topk_indices, Tensor gating_output, bool renormalize) -> ()");
256
  m.impl("topk_softmax", torch::kCUDA, &topk_softmax);
257

258
259
  m.def("moe_sum_reduce(Tensor input, Tensor output, float routed_scaling_factor) -> ()");
  m.impl("moe_sum_reduce", torch::kCUDA, &moe_sum_reduce);
260
261
262
263

  m.def("moe_sum(Tensor input, Tensor! output) -> ()");
  m.impl("moe_sum", torch::kCUDA, &moe_sum);

264
  m.def(
265
      "moe_fused_gate(Tensor input, Tensor bias, int num_expert_group, int topk_group, int topk, int "
266
      "num_fused_shared_experts, float routed_scaling_factor, bool apply_routed_scaling_factor_on_output) -> "
267
268
      "(Tensor[])");
  m.impl("moe_fused_gate", torch::kCUDA, &moe_fused_gate);
269

270
  m.def(
271
272
      "fp8_blockwise_scaled_grouped_mm(Tensor output, Tensor a_ptrs, Tensor b_ptrs, Tensor out_ptrs, Tensor "
      "a_scales_ptrs, Tensor b_scales_ptrs, Tensor a, Tensor b, Tensor scales_a, Tensor scales_b, Tensor "
273
      "stride_a, Tensor stride_b, Tensor stride_c, Tensor layout_sfa, Tensor layout_sfb, Tensor problem_sizes, Tensor "
274
      "expert_offsets, Tensor workspace) -> ()");
275
  m.impl("fp8_blockwise_scaled_grouped_mm", torch::kCUDA, &fp8_blockwise_scaled_grouped_mm);
276

277
  m.def(
278
279
280
      "prepare_moe_input(Tensor topk_ids, Tensor expert_offsets, Tensor? blockscale_offsets, Tensor problem_sizes1,"
      " Tensor problem_sizes2, Tensor input_permutation, Tensor output_permutation, int num_experts, int n, int k) -> "
      "()");
281
  m.impl("prepare_moe_input", torch::kCUDA, &prepare_moe_input);
282
283
284

  m.def("shuffle_rows(Tensor input, Tensor dst2src_map, Tensor output) -> ()");
  m.impl("shuffle_rows", torch::kCUDA, &shuffle_rows);
285
286
  m.def("apply_shuffle_mul_sum(Tensor input, Tensor output, Tensor permutation, Tensor? factors) -> ()");
  m.impl("apply_shuffle_mul_sum", torch::kCUDA, &apply_shuffle_mul_sum);
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
  /*
   * From csrc/moe/marlin_moe_wna16
   */
  m.def(
      "moe_wna16_marlin_gemm(Tensor! a, Tensor? c_or_none,"
      "Tensor! b_q_weight, Tensor! b_scales, Tensor? b_zeros_or_none,"
      "Tensor? g_idx_or_none, Tensor? perm_or_none, Tensor! workspace,"
      "Tensor sorted_token_ids,"
      "Tensor! expert_ids, Tensor! num_tokens_past_padded,"
      "Tensor! topk_weights, int moe_block_size, int top_k, "
      "bool mul_topk_weights, bool is_ep, int b_q_type_id,"
      "int size_m, int size_n, int size_k,"
      "bool is_k_full, bool use_atomic_add,"
      "bool use_fp32_reduce, bool is_zp_float) -> Tensor");
  m.impl("moe_wna16_marlin_gemm", torch::kCUDA, &moe_wna16_marlin_gemm);

  /*
   * From csrc/moe/cutlass_moe/w4a8
   */
  m.def(
      "get_cutlass_w4a8_moe_mm_data(Tensor topk_ids, Tensor! expert_offsets, "
      "                        Tensor! problem_sizes1, Tensor! problem_sizes2, "
      "                        Tensor! input_permutation, "
      "                        Tensor! output_permutation, int num_experts, "
      "                        int n, int k) -> ()");
  m.impl("get_cutlass_w4a8_moe_mm_data", torch::kCUDA, &get_cutlass_w4a8_moe_mm_data);

  m.def(
      "cutlass_w4a8_moe_mm(Tensor! d, Tensor a, Tensor b, "
      "               Tensor a_scales, Tensor b_scales, Tensor expert_offsets, "
      "               Tensor problem_sizes, Tensor a_strides, "
      "               Tensor b_strides, Tensor d_strides, Tensor s_strides,"
      "               int chunk_size, int topk) -> ()");
  m.impl("cutlass_w4a8_moe_mm", torch::kCUDA, &cutlass_w4a8_moe_mm);

323
324
325
  /*
   * From csrc/speculative
   */
326
327
328
  m.def(
      "tree_speculative_sampling_target_only(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
329
      "Tensor uniform_samples, Tensor uniform_samples_for_final_sampling, Tensor target_probs, Tensor draft_probs, "
330
331
332
333
334
335
336
337
338
339
      "float threshold_single, float threshold_acc, "
      "bool deterministic, int cuda_stream) -> ()");
  m.impl("tree_speculative_sampling_target_only", torch::kCUDA, &tree_speculative_sampling_target_only);

  m.def(
      "verify_tree_greedy(Tensor! predicts, Tensor! accept_index, Tensor! accept_token_num, "
      "Tensor candidates, Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "Tensor target_predict, int cuda_stream) -> ()");
  m.impl("verify_tree_greedy", torch::kCUDA, &verify_tree_greedy);

340
341
342
343
344
345
  m.def(
      "reconstruct_indices_from_tree_mask(Tensor tree_mask, Tensor verified_seq_len, Tensor positions, "
      "Tensor retrive_index, Tensor retrive_next_token, Tensor retrive_next_sibling, "
      "int batch_size, int draft_token_num) -> ()");
  m.impl("reconstruct_indices_from_tree_mask", torch::kCUDA, &reconstruct_indices_from_tree_mask);

346
347
348
  m.def(
      "build_tree_kernel_efficient(Tensor parent_list, Tensor selected_index, Tensor verified_seq_len, "
      "Tensor! tree_mask, Tensor! positions, Tensor! retrive_index, Tensor! retrive_next_token, "
349
350
      "Tensor! retrive_next_sibling, int topk, int depth, int draft_token_num, int tree_mask_mode) -> "
      "()");
351
352
  m.impl("build_tree_kernel_efficient", torch::kCUDA, &build_tree_kernel_efficient);

353
354
355
  m.def(
      "segment_packbits(Tensor x, Tensor input_indptr, Tensor output_indptr, Tensor! y, int batch_size, "
      "int cuda_stream) -> ()");
356
  m.impl("segment_packbits", torch::kCUDA, &segment_packbits);
357

358
359
360
361
362
363
364
365
  /*
   * From csrc/kvcacheio
   */
  m.def(
      "transfer_kv_per_layer(Tensor src_k, Tensor dst_k, Tensor src_v, Tensor dst_v, Tensor src_indices, Tensor "
      "dst_indices, int item_size, int block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_per_layer", torch::kCUDA, &transfer_kv_per_layer);
  m.def(
366
      "transfer_kv_per_layer_pf_lf(Tensor src_k, Tensor dst_k, Tensor src_v, Tensor dst_v, Tensor src_indices, Tensor "
367
      "dst_indices, int layer_id, int item_size, int src_layout_dim, int block_quota, int num_warps_per_block) -> ()");
368
  m.impl("transfer_kv_per_layer_pf_lf", torch::kCUDA, &transfer_kv_per_layer_pf_lf);
369
  m.def(
370
371
      "transfer_kv_all_layer(Tensor src_k_layers, Tensor dst_k_layers, Tensor src_v_layers, Tensor dst_v_layers, "
      "Tensor src_indices, Tensor dst_indices, int item_size, int num_layers, int block_quota, int "
372
373
374
      "num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer", torch::kCUDA, &transfer_kv_all_layer);
  m.def(
375
376
377
378
      "transfer_kv_all_layer_lf_pf(Tensor src_k_layers, Tensor dst_k, Tensor src_v_layers, Tensor dst_v, "
      "Tensor src_indices, Tensor dst_indices, int item_size, int dst_layout_dim, int num_layers, int block_quota, int "
      "num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer_lf_pf", torch::kCUDA, &transfer_kv_all_layer_lf_pf);
379
380
381
382
383
  m.def(
      "transfer_kv_per_layer_mla(Tensor src, Tensor dst, Tensor src_indices, Tensor dst_indices, int item_size, int "
      "block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_per_layer_mla", torch::kCUDA, &transfer_kv_per_layer_mla);
  m.def(
384
385
      "transfer_kv_per_layer_mla_pf_lf(Tensor src, Tensor dst, Tensor src_indices, Tensor dst_indices, int layer_id, "
      "int item_size, int src_layout_dim, int block_quota, int num_warps_per_block) -> ()");
386
  m.impl("transfer_kv_per_layer_mla_pf_lf", torch::kCUDA, &transfer_kv_per_layer_mla_pf_lf);
387
  m.def(
388
389
      "transfer_kv_all_layer_mla(Tensor src_layers, Tensor dst_layers, Tensor src_indices, Tensor dst_indices, int "
      "item_size, int num_layers, int block_quota, int num_warps_per_block) -> ()");
390
391
  m.impl("transfer_kv_all_layer_mla", torch::kCUDA, &transfer_kv_all_layer_mla);
  m.def(
392
393
394
395
396
397
398
      "transfer_kv_all_layer_mla_lf_pf(Tensor src_layers, Tensor dst, Tensor src_indices, Tensor dst_indices, "
      "int item_size, int dst_layout_dim, int num_layers, int block_quota, int num_warps_per_block) -> ()");
  m.impl("transfer_kv_all_layer_mla_lf_pf", torch::kCUDA, &transfer_kv_all_layer_mla_lf_pf);
  m.def(
      "transfer_kv_direct(Tensor[] src_layers, Tensor[] dst_layers, Tensor src_indices, Tensor dst_indices, int "
      "page_size) -> ()");
  m.impl("transfer_kv_direct", torch::kCUDA, &transfer_kv_direct);
399
400
401
402
403
404
405
406
  m.def(
      "transfer_kv_per_layer_direct_pf_lf(Tensor[] src_ptrs, Tensor[] dst_ptrs, Tensor src_indices, "
      "Tensor dst_indices, int layer_id, int page_size)->() ");
  m.impl("transfer_kv_per_layer_direct_pf_lf", torch::kCUDA, &transfer_kv_per_layer_direct_pf_lf);
  m.def(
      "transfer_kv_all_layer_direct_lf_pf(Tensor[] src_ptrs, Tensor[] dst_ptrs, Tensor src_indices, "
      "Tensor dst_indices, int page_size) ->() ");
  m.impl("transfer_kv_all_layer_direct_lf_pf", torch::kCUDA, &transfer_kv_all_layer_direct_lf_pf);
407

Lianmin Zheng's avatar
Lianmin Zheng committed
408
409
410
411
412
413
  /*
   * From csrc/memory
   */
  m.def("store_kv_cache(Tensor k_cache, Tensor v_cache, Tensor out_loc, Tensor k, Tensor v) -> ()");
  m.impl("store_kv_cache", &store_kv_cache);

414
415
416
  /*
   * From FlashInfer
   */
Yineng Zhang's avatar
Yineng Zhang committed
417
418
  m.def(
      "bmm_fp8(Tensor A, Tensor B, Tensor! D, Tensor A_scale, Tensor B_scale, Tensor workspace_buffer, int "
419
420
      "cublas_handle, int cuda_stream) -> ()",
      {at::Tag::needs_fixed_stride_order});
Yineng Zhang's avatar
Yineng Zhang committed
421
  m.impl("bmm_fp8", torch::kCUDA, &bmm_fp8);
422
423

  m.def(
424
425
      "min_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? maybe_min_p_arr, float "
      "min_p_val, bool deterministic, Generator? gen) -> ()");
426
427
  m.impl("min_p_sampling_from_probs", torch::kCUDA, &min_p_sampling_from_probs);

428
  m.def("top_k_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_k_arr, int top_k_val) -> ()");
429
430
  m.impl("top_k_renorm_probs", torch::kCUDA, &top_k_renorm_probs);

431
  m.def("top_p_renorm_probs(Tensor probs, Tensor! renorm_probs, Tensor? maybe_top_p_arr, float top_p_val) -> ()");
432
433
  m.impl("top_p_renorm_probs", torch::kCUDA, &top_p_renorm_probs);

434
435
436
437
438
  m.def(
      "top_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? "
      "maybe_top_p_arr, float top_p_val, bool deterministic, Generator? gen) -> ()");
  m.impl("top_p_sampling_from_probs", torch::kCUDA, &top_p_sampling_from_probs);

439
  m.def(
440
441
      "top_k_top_p_sampling_from_probs(Tensor probs, Tensor output, Tensor? maybe_indices, Tensor? maybe_top_k_arr, "
      "float top_k_val, Tensor? maybe_top_p_arr, float top_p_val, bool deterministic, Generator? gen) -> ()");
442
443
  m.impl("top_k_top_p_sampling_from_probs", torch::kCUDA, &top_k_top_p_sampling_from_probs);

444
445
446
  m.def("top_k_mask_logits(Tensor logits, Tensor mask_logits, Tensor? maybe_top_k_arr, int top_k_val) -> ()");
  m.impl("top_k_mask_logits", torch::kCUDA, &top_k_mask_logits);

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
  /*
   * From Sparse Flash Attention
   */
  m.def(
      "fwd_sparse(Tensor! q, Tensor k, Tensor v, "
      "Tensor block_count, Tensor block_offset, Tensor column_count, Tensor column_index, "
      "Tensor!? out, Tensor? alibi_slopes, "
      "float p_dropout, float softmax_scale, bool is_causal, "
      "float softcap, bool return_softmax, Generator? gen)"
      "-> Tensor[]");
  m.impl("fwd_sparse", torch::kCUDA, &flash::mha_fwd_sparse);

  m.def(
      "varlen_fwd_sparse(Tensor! q, Tensor k, Tensor v, "
      "Tensor block_count, Tensor block_offset, Tensor column_count, Tensor column_index, "
      "Tensor!? out, Tensor cu_seqlens_q, "
      "Tensor cu_seqlens_k, Tensor? seqused_k, Tensor? alibi_slopes, "
      "int max_seqlen_q, int max_seqlen_k, float p_dropout, float softmax_scale, bool zero_tensors, "
      "bool is_causal, float softcap, bool return_softmax, "
      "Generator? gen) -> Tensor[]");
  m.impl("varlen_fwd_sparse", torch::kCUDA, &flash::mha_varlen_fwd_sparse);
468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
  // Sparse Attention utils
  m.def(
      "convert_vertical_slash_indexes("
      "   Tensor! block_count, Tensor! block_offset, "
      "   Tensor! column_count, Tensor! column_index, "
      "   Tensor q_seqlens, Tensor q_seqlens, "
      "   Tensor vertical_indexes, Tensor slash_indexes, "
      "   int context_size, int block_size_M, int block_size_N, "
      "   bool causal) -> ()");
  m.impl("convert_vertical_slash_indexes", torch::kCUDA, &convert_vertical_slash_indexes);

  m.def(
      "convert_vertical_slash_indexes_mergehead("
      "   Tensor! block_count, Tensor! block_offset, "
      "   Tensor! column_count, Tensor! column_index, "
      "   Tensor q_seqlens, Tensor q_seqlens, "
      "   Tensor vertical_indexes, Tensor slash_indexes, "
      "   Tensor vertical_indices_count, Tensor slash_indices_count, "
      "   int context_size, int block_size_M, int block_size_N, "
      "   bool causal) -> ()");
  m.impl("convert_vertical_slash_indexes_mergehead", torch::kCUDA, &convert_vertical_slash_indexes_mergehead);

491
  /*
Lianmin Zheng's avatar
Lianmin Zheng committed
492
   * From csrc/grammar
493
494
495
   */
  m.def("apply_token_bitmask_inplace_cuda(Tensor logits, Tensor bitmask, Tensor? indices=None) -> ()");
  m.impl("apply_token_bitmask_inplace_cuda", &ApplyTokenBitmaskInplace);
HandH1998's avatar
HandH1998 committed
496
497

  /*
Lianmin Zheng's avatar
Lianmin Zheng committed
498
   * From csrc/gemm (QServe)
HandH1998's avatar
HandH1998 committed
499
500
501
502
503
504
505
506
507
508
   */
  m.def(
      "qserve_w4a8_per_chn_gemm(Tensor _in_feats, Tensor _kernel, Tensor _wscales, Tensor _ascales, Tensor _w_szs, "
      "Tensor _a_ssums, Tensor! _out_feats) -> ()");
  m.impl("qserve_w4a8_per_chn_gemm", torch::kCUDA, &qserve_w4a8_per_chn_gemm);

  m.def(
      "qserve_w4a8_per_group_gemm(Tensor _in_feats, Tensor _kernel, Tensor _zeros, Tensor _scales_i8, Tensor _wscales, "
      "Tensor _ascales, Tensor! _out_feats) -> ()");
  m.impl("qserve_w4a8_per_group_gemm", torch::kCUDA, &qserve_w4a8_per_group_gemm);
509

Yi Zhang's avatar
Yi Zhang committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
  /*
   * From csrc/mamba
   */
  m.def(
      "causal_conv1d_update(Tensor! x,"
      "Tensor! conv_state,"
      "Tensor! weight,"
      "Tensor? bias_,"
      "bool silu_activation,"
      "Tensor? cache_seqlens_,"
      "Tensor? conv_state_indices,"
      "int pad_slot_id) -> ()");
  m.impl("causal_conv1d_update", torch::kCUDA, &causal_conv1d_update);

  m.def(
      "causal_conv1d_fwd(Tensor! x, Tensor! weight,"
      "Tensor? bias_,"
      "Tensor!? conv_states,"
      "Tensor? query_start_loc,"
      "Tensor? cache_indices,"
      "Tensor? has_initial_state,"
      "bool silu_activation,"
      "int pad_slot_id) -> ()");
  m.impl("causal_conv1d_fwd", torch::kCUDA, &causal_conv1d_fwd);
534
535
}

536
REGISTER_EXTENSION(common_ops)