test_serving_chat.py 22.1 KB
Newer Older
1
"""
2
3
4
5
6
Unit-tests for OpenAIServingChat — rewritten to use only the std-lib 'unittest'.
Run with either:
    python tests/test_serving_chat_unit.py -v
or
    python -m unittest discover -s tests -p "test_*unit.py" -v
7
8
"""

9
10
import asyncio
import json
11
import unittest
12
import uuid
13
from typing import Optional
14
15
16
17
from unittest.mock import Mock, patch

from fastapi import Request

18
19
20
21
from sglang.srt.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    MessageProcessingResult,
)
22
23
24
25
from sglang.srt.entrypoints.openai.serving_chat import OpenAIServingChat
from sglang.srt.managers.io_struct import GenerateReqInput


26
27
28
class _MockTokenizerManager:
    """Minimal mock that satisfies OpenAIServingChat."""

29
    def __init__(self):
30
31
32
33
34
35
36
        self.model_config = Mock(is_multimodal=False)
        self.server_args = Mock(
            enable_cache_report=False,
            tool_call_parser="hermes",
            reasoning_parser=None,
        )
        self.chat_template_name: Optional[str] = "llama-3"
37

38
        # tokenizer stub
39
        self.tokenizer = Mock()
40
41
        self.tokenizer.encode.return_value = [1, 2, 3, 4, 5]
        self.tokenizer.decode.return_value = "Test response"
42
43
44
        self.tokenizer.chat_template = None
        self.tokenizer.bos_token_id = 1

45
46
        # async generator stub for generate_request
        async def _mock_generate():
47
48
49
50
51
52
53
54
55
56
57
58
59
60
            yield {
                "text": "Test response",
                "meta_info": {
                    "id": f"chatcmpl-{uuid.uuid4()}",
                    "prompt_tokens": 10,
                    "completion_tokens": 5,
                    "cached_tokens": 0,
                    "finish_reason": {"type": "stop", "matched": None},
                    "output_token_logprobs": [(0.1, 1, "Test"), (0.2, 2, "response")],
                    "output_top_logprobs": None,
                },
                "index": 0,
            }

61
62
        self.generate_request = Mock(return_value=_mock_generate())
        self.create_abort_task = Mock()
63
64


65
66
67
68
69
70
71
72
73
class _MockTemplateManager:
    """Minimal mock for TemplateManager."""

    def __init__(self):
        self.chat_template_name: Optional[str] = "llama-3"
        self.jinja_template_content_format: Optional[str] = None
        self.completion_template_name: Optional[str] = None


74
75
76
77
class ServingChatTestCase(unittest.TestCase):
    # ------------- common fixtures -------------
    def setUp(self):
        self.tm = _MockTokenizerManager()
78
79
        self.template_manager = _MockTemplateManager()
        self.chat = OpenAIServingChat(self.tm, self.template_manager)
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        # frequently reused requests
        self.basic_req = ChatCompletionRequest(
            model="x",
            messages=[{"role": "user", "content": "Hi?"}],
            temperature=0.7,
            max_tokens=100,
            stream=False,
        )
        self.stream_req = ChatCompletionRequest(
            model="x",
            messages=[{"role": "user", "content": "Hi?"}],
            temperature=0.7,
            max_tokens=100,
            stream=True,
        )
96

97
98
        self.fastapi_request = Mock(spec=Request)
        self.fastapi_request.headers = {}
99

100
101
    # ------------- conversion tests -------------
    def test_convert_to_internal_request_single(self):
102
103
        with patch(
            "sglang.srt.entrypoints.openai.serving_chat.generate_chat_conv"
104
105
106
107
108
109
110
111
        ) as conv_mock, patch.object(self.chat, "_process_messages") as proc_mock:
            conv_ins = Mock()
            conv_ins.get_prompt.return_value = "Test prompt"
            conv_ins.image_data = conv_ins.audio_data = None
            conv_ins.modalities = []
            conv_ins.stop_str = ["</s>"]
            conv_mock.return_value = conv_ins

112
            proc_mock.return_value = MessageProcessingResult(
113
114
115
116
117
118
119
120
                "Test prompt",
                [1, 2, 3],
                None,
                None,
                [],
                ["</s>"],
                None,
            )
121

122
            adapted, processed = self.chat._convert_to_internal_request(self.basic_req)
123
124
125
            self.assertIsInstance(adapted, GenerateReqInput)
            self.assertFalse(adapted.stream)
            self.assertEqual(processed, self.basic_req)
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    def test_stop_str_isolation_between_requests(self):
        """Test that stop strings from one request don't affect subsequent requests.

        This tests the fix for the bug where conv.stop_str was being mutated globally,
        causing stop strings from one request to persist in subsequent requests.
        """
        # Mock conversation template with initial stop_str
        initial_stop_str = ["\n"]

        with patch(
            "sglang.srt.entrypoints.openai.serving_chat.generate_chat_conv"
        ) as conv_mock:
            # Create a mock conversation object that will be returned by generate_chat_conv
            conv_ins = Mock()
            conv_ins.get_prompt.return_value = "Test prompt"
            conv_ins.image_data = None
            conv_ins.audio_data = None
            conv_ins.modalities = []
            conv_ins.stop_str = (
                initial_stop_str.copy()
            )  # Template's default stop strings
            conv_mock.return_value = conv_ins

            # First request with additional stop string
            req1 = ChatCompletionRequest(
                model="x",
                messages=[{"role": "user", "content": "First request"}],
                stop=["CUSTOM_STOP"],
            )

            # Call the actual _apply_conversation_template method (not mocked)
            result1 = self.chat._apply_conversation_template(req1, is_multimodal=False)

            # Verify first request has both stop strings
            expected_stop1 = initial_stop_str + ["CUSTOM_STOP"]
            self.assertEqual(result1.stop, expected_stop1)

            # Verify the original template's stop_str wasn't mutated after first request
            self.assertEqual(conv_ins.stop_str, initial_stop_str)

            # Second request without additional stop string
            req2 = ChatCompletionRequest(
                model="x",
                messages=[{"role": "user", "content": "Second request"}],
                # No custom stop strings
            )
            result2 = self.chat._apply_conversation_template(req2, is_multimodal=False)

            # Verify second request only has original stop strings (no CUSTOM_STOP from req1)
            self.assertEqual(result2.stop, initial_stop_str)
            self.assertNotIn("CUSTOM_STOP", result2.stop)
            self.assertEqual(conv_ins.stop_str, initial_stop_str)

180
181
182
183
184
    # ------------- sampling-params -------------
    def test_sampling_param_build(self):
        req = ChatCompletionRequest(
            model="x",
            messages=[{"role": "user", "content": "Hi"}],
185
186
187
188
            temperature=0.8,
            max_tokens=150,
            min_tokens=5,
            top_p=0.9,
189
            stop=["</s>"],
190
        )
191
192
193
194
195
196
197
198
199
200
201
        with patch.object(
            self.chat,
            "_process_messages",
            return_value=("Prompt", [1], None, None, [], ["</s>"], None),
        ):
            params = self.chat._build_sampling_params(req, ["</s>"], None)
            self.assertEqual(params["temperature"], 0.8)
            self.assertEqual(params["max_new_tokens"], 150)
            self.assertEqual(params["min_new_tokens"], 5)
            self.assertEqual(params["stop"], ["</s>"])

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    async def test_unstreamed_tool_args_completion(self):
        """Test that remaining tool call arguments are sent when generation finishes."""

        # Mock FunctionCallParser with detector that has partial tool call data
        mock_parser = Mock()
        mock_detector = Mock()

        # Simulate a tool call that was partially streamed
        mock_detector.prev_tool_call_arr = [
            {
                "name": "get_weather",
                "arguments": {"location": "San Francisco", "unit": "celsius"},
            }
        ]
        mock_detector.streamed_args_for_tool = [
            '{"location": "San Francisco"'  # Partial arguments streamed so far
        ]
        mock_parser.detector = mock_detector

        content = {
            "meta_info": {
                "id": "chatcmpl-test123",
            }
        }

        request = ChatCompletionRequest(
            model="test",
            messages=[{"role": "user", "content": "What's the weather?"}],
            tools=[{"type": "function", "function": {"name": "get_weather"}}],
        )

        # Test the completion method
        result = self.chat._check_for_unstreamed_tool_args(
            parser=mock_parser,
            content=content,
            request=request,
            finish_reason_type="stop",
            index=0,
        )

        # Should return a chunk with remaining arguments
        self.assertIsNotNone(result, "Should return chunk with remaining arguments")
        self.assertIn('"arguments":', result, "Should contain arguments field")
        self.assertIn(
            ', "unit": "celsius"}', result, "Should contain remaining arguments"
        )
        self.assertIn(
            '"finish_reason":null',
            result,
            "Should not include finish_reason in completion chunk",
        )

    async def test_unstreamed_tool_args_no_completion_needed(self):
        """Test that no completion chunk is sent when all arguments were already streamed."""

        # Mock FunctionCallParser with detector that has complete tool call data
        mock_parser = Mock()
        mock_detector = Mock()

        # Simulate a tool call that was completely streamed
        mock_detector.prev_tool_call_arr = [
            {"name": "get_weather", "arguments": {"location": "San Francisco"}}
        ]
        mock_detector.streamed_args_for_tool = [
            '{"location": "San Francisco"}'  # All arguments already streamed
        ]
        mock_parser.detector = mock_detector

        content = {
            "meta_info": {
                "id": "chatcmpl-test123",
            }
        }

        request = ChatCompletionRequest(
            model="test",
            messages=[{"role": "user", "content": "What's the weather?"}],
            tools=[{"type": "function", "function": {"name": "get_weather"}}],
        )

        # Test the completion method
        result = self.chat._check_for_unstreamed_tool_args(
            parser=mock_parser,
            content=content,
            request=request,
            finish_reason_type="stop",
            index=0,
        )

        # Should return None since no completion is needed
        self.assertIsNone(result, "Should return None when no completion is needed")

    async def test_unstreamed_tool_args_no_parser_data(self):
        """Test that no completion chunk is sent when parser has no tool call data."""

        # Mock FunctionCallParser with empty detector
        mock_parser = Mock()
        mock_detector = Mock()
        mock_detector.prev_tool_call_arr = []
        mock_detector.streamed_args_for_tool = []
        mock_parser.detector = mock_detector

        content = {
            "meta_info": {
                "id": "chatcmpl-test123",
            }
        }

        request = ChatCompletionRequest(
            model="test",
            messages=[{"role": "user", "content": "What's the weather?"}],
            tools=[{"type": "function", "function": {"name": "get_weather"}}],
        )

        # Test the completion method
        result = self.chat._check_for_unstreamed_tool_args(
            parser=mock_parser,
            content=content,
            request=request,
            finish_reason_type="stop",
            index=0,
        )

        # Should return None since there's no parser data
        self.assertIsNone(
            result, "Should return None when parser has no tool call data"
        )

330
331
332
333
334
    # ------------- kimi_k2 tool_call_id formatting -------------
    def test_kimi_k2_non_streaming_tool_call_id_format(self):
        """Ensure non-streaming tool_call.id matches functions.{name}:{index} for kimi_k2 parser."""

        # Force kimi_k2 parser
335
        self.chat.tool_call_parser = "kimi_k2"
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

        # Mock FunctionCallParser.parse_non_stream to return one tool call
        with patch(
            "sglang.srt.entrypoints.openai.serving_chat.FunctionCallParser"
        ) as ParserMock:
            parser_instance = ParserMock.return_value

            # Build a mock ToolCallItem-like object
            call_info = Mock()
            call_info.name = "get_weather"
            call_info.parameters = '{"city":"Paris"}'
            call_info.tool_index = 0

            parser_instance.has_tool_call.return_value = True
            parser_instance.parse_non_stream.return_value = ("", [call_info])

            finish_reason = {"type": "stop", "matched": None}
            tools = [
                {"type": "function", "function": {"name": "get_weather"}},
            ]

357
            tool_calls, remaining_text, finish_reason = self.chat._process_tool_calls(
358
359
360
361
362
363
364
365
366
367
368
369
370
371
                text="<|tool_calls_section_begin|>...",
                tools=tools,
                finish_reason=finish_reason,
            )

            self.assertIsNotNone(tool_calls)
            self.assertEqual(len(tool_calls), 1)
            self.assertEqual(tool_calls[0].id, "functions.get_weather:0")
            self.assertEqual(tool_calls[0].function.name, "get_weather")

    def test_kimi_k2_streaming_tool_call_id_format(self):
        """Ensure streaming first chunk tool_call.id matches functions.{name}:{index} for kimi_k2 parser."""

        # Force kimi_k2 parser
372
        self.chat.tool_call_parser = "kimi_k2"
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

        # Prepare request with tools
        req = ChatCompletionRequest(
            model="x",
            messages=[{"role": "user", "content": "Hi?"}],
            tools=[{"type": "function", "function": {"name": "get_weather"}}],
            stream=True,
        )

        # Patch FunctionCallParser used inside _process_tool_call_stream
        with patch(
            "sglang.srt.entrypoints.openai.serving_chat.FunctionCallParser"
        ) as ParserMock:
            parser_instance = ParserMock.return_value

            # First call returns one ToolCallItem-like chunk (with name)
            first_chunk_call = Mock()
            first_chunk_call.tool_index = 0
            first_chunk_call.name = "get_weather"
            first_chunk_call.parameters = ""
            parser_instance.parse_stream_chunk.side_effect = [
                ("", [first_chunk_call]),
                ("", []),
            ]

            async def collect_first_tool_chunk():
                gen = self.chat._process_tool_call_stream(
                    index=0,
                    delta="irrelevant",
                    parser_dict={},
                    content={"meta_info": {"id": "chatcmpl-test"}},
                    request=req,
                    has_tool_calls={},
                )
                # Get first yielded SSE line
                line = None
                async for emitted in gen:
                    line = emitted
                    break
                return line

            loop = asyncio.get_event_loop()
            line = loop.run_until_complete(collect_first_tool_chunk())
            self.assertIsNotNone(line)
            self.assertTrue(line.startswith("data: "))

            payload = json.loads(line[len("data: ") :])
            tool_calls = payload["choices"][0]["delta"]["tool_calls"]
            self.assertEqual(tool_calls[0]["id"], "functions.get_weather:0")

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
    def test_kimi_k2_non_streaming_tool_call_id_with_history(self):
        """Ensure non-streaming tool_call.id increase with tool calls history for kimi_k2 parser."""

        # Force kimi_k2 parser
        self.chat.tool_call_parser = "kimi_k2"

        # Prepare request with tool calls history
        req = ChatCompletionRequest(
            model="x",
            messages=[
                {"role": "user", "content": "What's the weather today in paris?"},
                {
                    "role": "assistant",
                    "content": "Let me do some search first.",
                    "tool_calls": [
                        {
                            "id": "functions.get_weather:0",
                            "type": "function",
                            "function": {
                                "name": "get_weather",
                                "arguments": '{"city": "Paris"}',
                            },
                        }
                    ],
                },
                {
                    "role": "tool",
                    "content": "It's rainy in paris now.",
                    "tool_call_id": "functions.get_weather:0",
                },
                {
                    "role": "assistant",
                    "content": "It's rainy now.",
                },
                {
                    "role": "user",
                    "content": "What about LA and Tokyo?",
                },
            ],
            tools=[{"type": "function", "function": {"name": "get_weather"}}],
            stream=False,
        )

        # Mock FunctionCallParser.parse_non_stream to return one tool call
        with patch(
            "sglang.srt.entrypoints.openai.serving_chat.FunctionCallParser"
        ) as ParserMock:
            parser_instance = ParserMock.return_value

            # Build a mock ToolCallItem-like object
            call_info = Mock()
            call_info.name = "get_weather"
            call_info.parameters = '{"city":"Loa Angeles"}'
            # Kimi-K2 series models might generate fixed number tool_indx,
            # ignoring the tool calls history and mess up all the following tool calls
            call_info.tool_index = 0

            call_info2 = Mock()
            call_info2.name = "get_weather"
            call_info2.parameters = '{"city":"Tokyo"}'
            call_info2.tool_index = 1

            parser_instance.has_tool_call.return_value = True
            parser_instance.parse_non_stream.return_value = (
                "",
                [call_info, call_info2],
            )

            finish_reason = {"type": "stop", "matched": None}
            tools = [
                {"type": "function", "function": {"name": "get_weather"}},
            ]

            history_tool_calls_cnt = self.chat._get_history_tool_calls_cnt(req)
            tool_calls, remaining_text, _ = self.chat._process_tool_calls(
                text="<|tool_calls_section_begin|>...",
                tools=tools,
                finish_reason=finish_reason,
                history_tool_calls_cnt=history_tool_calls_cnt,
            )

            self.assertEqual(history_tool_calls_cnt, 1)
            self.assertIsNotNone(tool_calls)
            self.assertEqual(len(tool_calls), 2)
            self.assertEqual(tool_calls[0].id, "functions.get_weather:1")
            self.assertEqual(tool_calls[0].function.name, "get_weather")
            self.assertEqual(tool_calls[1].id, "functions.get_weather:2")
            self.assertEqual(tool_calls[1].function.name, "get_weather")

    def test_kimi_k2_streaming_tool_call_id_with_history(self):
        """Ensure streaming first chunk tool_call.id increase with tool calls history for kimi_k2 parser."""

        # Force kimi_k2 parser
        self.chat.tool_call_parser = "kimi_k2"

        # Prepare request with tool calls history
        req = ChatCompletionRequest(
            model="x",
            messages=[
                {"role": "user", "content": "What's the weather today in paris?"},
                {
                    "role": "assistant",
                    "content": "Let me do some search first.",
                    "tool_calls": [
                        {
                            "id": "functions.get_weather:0",
                            "type": "function",
                            "function": {
                                "name": "get_weather",
                                "arguments": '{"city": "Paris"}',
                            },
                        }
                    ],
                },
                {
                    "role": "tool",
                    "content": "It's rainy in paris now.",
                    "tool_call_id": "functions.get_weather:0",
                },
                {
                    "role": "assistant",
                    "content": "It's rainy now.",
                },
                {
                    "role": "user",
                    "content": "What about LA?",
                },
            ],
            tools=[{"type": "function", "function": {"name": "get_weather"}}],
            stream=True,
        )

        # Patch FunctionCallParser used inside _process_tool_call_stream
        with patch(
            "sglang.srt.entrypoints.openai.serving_chat.FunctionCallParser"
        ) as ParserMock:
            parser_instance = ParserMock.return_value

            # First call returns one ToolCallItem-like chunk (with name)
            first_chunk_call = Mock()
            # Kimi-K2 series models might generate fixed number tool_indx,
            # ignoring the tool calls history and mess up all the following tool calls
            first_chunk_call.tool_index = 0
            first_chunk_call.name = "get_weather"
            first_chunk_call.parameters = ""
            parser_instance.parse_stream_chunk.side_effect = [
                ("", [first_chunk_call]),
                ("", []),
            ]

            async def collect_first_tool_chunk():
                gen = self.chat._process_tool_call_stream(
                    index=0,
                    delta="irrelevant",
                    parser_dict={},
                    content={"meta_info": {"id": "chatcmpl-test"}},
                    request=req,
                    has_tool_calls={},
                )
                # Get first yielded SSE line
                line = None
                async for emitted in gen:
                    line = emitted
                    break
                return line

            loop = asyncio.get_event_loop()
            line = loop.run_until_complete(collect_first_tool_chunk())
            self.assertIsNotNone(line)
            self.assertTrue(line.startswith("data: "))

            payload = json.loads(line[len("data: ") :])
            tool_calls = payload["choices"][0]["delta"]["tool_calls"]
            self.assertEqual(tool_calls[0]["id"], "functions.get_weather:1")

598
599
600

if __name__ == "__main__":
    unittest.main(verbosity=2)