test_causal_conv1d.py 17.4 KB
Newer Older
Yi Zhang's avatar
Yi Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# Adapted from https://github.com/vllm-project/vllm/blob/main/tests/kernels/mamba/test_causal_conv1d.py
from typing import Optional

import torch
from sgl_kernel import causal_conv1d_fwd
from sgl_kernel import causal_conv1d_update as causal_conv1d_update_kernel

PAD_SLOT_ID = -1


def causal_conv1d_fn(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: Optional[torch.Tensor] = None,
    query_start_loc: Optional[torch.Tensor] = None,
    cache_indices: Optional[torch.Tensor] = None,
    has_initial_state: Optional[torch.Tensor] = None,
    conv_states: Optional[torch.Tensor] = None,
    activation: Optional[str] = "silu",
    pad_slot_id: int = PAD_SLOT_ID,
):
    """
    x: (batch, dim, seqlen) or (dim,cu_seq_len) for varlen
        sequences are concatenated from left to right for varlen
    weight: (dim, width)
    bias: (dim,)
    query_start_loc: (batch + 1) int32
        The cumulative sequence lengths of the sequences in
        the batch, used to index into sequence. prepended by 0.
        for example: query_start_loc = torch.Tensor([0,10,16,17]),
        x.shape=(dim,17)
    cache_indices: (batch)  int32
        indicates the corresponding state index,
        like so: conv_state = conv_states[cache_indices[batch_id]]
    has_initial_state: (batch) bool
        indicates whether should the kernel take the current state as initial
        state for the calculations
    conv_states: (...,dim,width - 1) itype
        updated inplace if provided
    activation: either None or "silu" or "swish"
    pad_slot_id: int
            if cache_indices is passed, lets the kernel identify padded
            entries that will not be processed,
            for example: cache_indices = [pad_slot_id, 1, 20, pad_slot_id]
            in this case, the kernel will not process entries at
            indices 0 and 3
    out: (batch, dim, seqlen)
    """
    if activation not in [None, "silu", "swish"]:
        raise NotImplementedError("activation must be None, silu, or swish")
    if x.stride(-1) != 1:
        x = x.contiguous()
    bias = bias.contiguous() if bias is not None else None

    causal_conv1d_fwd(
        x,
        weight,
        bias,
        conv_states,
        query_start_loc,
        cache_indices,
        has_initial_state,
        activation in ["silu", "swish"],
        pad_slot_id,
    )
    return x


def causal_conv1d_update(
    x: torch.Tensor,
    conv_state: torch.Tensor,
    weight: torch.Tensor,
    bias: Optional[torch.Tensor] = None,
    activation: Optional[str] = None,
    cache_seqlens: Optional[torch.Tensor] = None,
    conv_state_indices: Optional[torch.Tensor] = None,
    pad_slot_id: int = PAD_SLOT_ID,
):
    """
    x: (batch, dim) or (batch, dim, seqlen)
    conv_state: (batch, dim, state_len), where state_len >= width - 1
    weight: (dim, width)
    bias: (dim,)
    cache_seqlens: (batch,), dtype int32.
        If not None, the conv_state is treated as a circular buffer.
        The conv_state will be updated by copying x to the conv_state
        starting at the index
        @cache_seqlens % state_len.
    conv_state_indices: (batch,), dtype int32
        If not None, the conv_state is a larger tensor along the batch dim,
        and we are selecting the batch coords specified by conv_state_indices.
        Useful for a continuous batching scenario.
    pad_slot_id: int
            if cache_indices is passed, lets the kernel identify padded
            entries that will not be processed,
            for example: cache_indices = [pad_slot_id, 1 ,20 ,pad_slot_id]
            in this case, the kernel will not process entries at
            indices 0 and 3
    out: (batch, dim) or (batch, dim, seqlen)
    """
    if activation not in [None, "silu", "swish"]:
        raise NotImplementedError(
            f"activation must be None, silu, or swish, actual: {activation}"
        )
    activation_val = activation in ["silu", "swish"]
    unsqueeze = x.dim() == 2
    if unsqueeze:
        x = x.unsqueeze(-1)
    causal_conv1d_update_kernel(
        x,
        conv_state,
        weight,
        bias,
        activation_val,
        cache_seqlens,
        conv_state_indices,
        pad_slot_id,
    )
    if unsqueeze:
        x = x.squeeze(-1)
    return x


# SPDX-License-Identifier: Apache-2.0

from typing import Optional

import pytest
import torch
import torch.nn.functional as F


def causal_conv1d_ref(
    x: torch.Tensor,
    weight: torch.Tensor,
    bias: Optional[torch.Tensor] = None,
    initial_states: Optional[torch.Tensor] = None,
    return_final_states: bool = False,
    final_states_out: Optional[torch.Tensor] = None,
    activation: Optional[str] = "silu",
):
    """
    x: (batch, dim, seqlen)
    weight: (dim, width)
    bias: (dim,)
    initial_states: (batch, dim, width - 1)
    final_states_out: (batch, dim, width - 1)

    out: (batch, dim, seqlen)
    """
    if activation not in [None, "silu", "swish"]:
        raise NotImplementedError("activation must be None, silu, or swish")
    dtype_in = x.dtype
    x = x.to(weight.dtype)
    seqlen = x.shape[-1]
    dim, width = weight.shape
    if initial_states is None:
        out = F.conv1d(x, weight.unsqueeze(1), bias, padding=width - 1, groups=dim)
    else:
        x = torch.cat([initial_states, x], dim=-1)
        out = F.conv1d(x, weight.unsqueeze(1), bias, padding=0, groups=dim)
    out = out[..., :seqlen]
    if return_final_states:
        final_states = F.pad(x, (width - 1 - x.shape[-1], 0)).to(
            dtype_in
        )  # (batch, dim, width - 1)
        if final_states_out is not None:
            final_states_out.copy_(final_states)
        else:
            final_states_out = final_states
    out = (out if activation is None else F.silu(out)).to(dtype=dtype_in)
    return (out, None) if not return_final_states else (out, final_states_out)


def causal_conv1d_update_ref(
    x, conv_state, weight, bias=None, activation=None, cache_seqlens=None
):
    """
    x: (batch, dim) or (batch, dim, seqlen)
    conv_state: (batch, dim, state_len), where state_len >= width - 1
    weight: (dim, width)
    bias: (dim,)
    cache_seqlens: (batch,), dtype int32.
        If not None, the conv_state is treated as a circular buffer.
        The conv_state will be updated by copying x to the
        conv_state starting at the index
        @cache_seqlens % state_len before performing the convolution.

    out: (batch, dim) or (batch, dim, seqlen)
    """
    if activation not in [None, "silu", "swish"]:
        raise NotImplementedError("activation must be None, silu, or swish")
    dtype_in = x.dtype
    unsqueeze = x.dim() == 2
    if unsqueeze:
        x = x.unsqueeze(-1)
    batch, dim, seqlen = x.shape
    width = weight.shape[1]
    state_len = conv_state.shape[-1]
    assert conv_state.shape == (batch, dim, state_len)
    assert weight.shape == (dim, width)
    if cache_seqlens is None:
        x_new = torch.cat([conv_state, x], dim=-1).to(
            weight.dtype
        )  # (batch, dim, state_len + seqlen)
        conv_state.copy_(x_new[:, :, -state_len:])
    else:
        width_idx = torch.arange(
            -(width - 1), 0, dtype=torch.long, device=x.device
        ).unsqueeze(0) + cache_seqlens.unsqueeze(1)
        width_idx = (
            torch.remainder(width_idx, state_len).unsqueeze(1).expand(-1, dim, -1)
        )
        x_new = torch.cat([conv_state.gather(2, width_idx), x], dim=-1).to(weight.dtype)
        copy_idx = torch.arange(seqlen, dtype=torch.long, device=x.device).unsqueeze(
            0
        ) + cache_seqlens.unsqueeze(1)
        copy_idx = torch.remainder(copy_idx, state_len).unsqueeze(1).expand(-1, dim, -1)
        conv_state.scatter_(2, copy_idx, x)
    out = F.conv1d(x_new, weight.unsqueeze(1), bias, padding=0, groups=dim)[
        :, :, -seqlen:
    ]
    if unsqueeze:
        out = out.squeeze(-1)
    return (out if activation is None else F.silu(out)).to(dtype=dtype_in)


@pytest.mark.parametrize("itype", [torch.bfloat16, torch.float])
@pytest.mark.parametrize("silu_activation", [True])
@pytest.mark.parametrize("has_bias", [True])
@pytest.mark.parametrize("has_initial_state", [True, False])
@pytest.mark.parametrize("width", [4])
@pytest.mark.parametrize(
    "seqlen", [1, 8, 16, 32, 64, 128, 256, 512, 784, 1024, 1025, 2048, 4096]
)
@pytest.mark.parametrize("dim", [64])
@pytest.mark.parametrize("batch", [1])
def test_causal_conv1d(
    batch, dim, seqlen, width, has_bias, silu_activation, has_initial_state, itype
):
    device = "cuda"
    rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
    if itype == torch.bfloat16:
        rtol, atol = 1e-2, 5e-2
    x = torch.randn(batch, dim, seqlen, device=device, dtype=itype).contiguous()

    weight = torch.randn(dim, width, device=device, dtype=itype)
    bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
    if has_initial_state:
        initial_states = torch.randn(batch, dim, width - 1, device=device, dtype=itype)
        has_initial_state_tensor = torch.ones(batch, dtype=torch.bool, device=x.device)
    else:
        initial_states = None
        has_initial_state_tensor = None
    x_ref = x.clone()
    weight_ref = weight.clone()
    bias_ref = bias.clone() if bias is not None else None
    initial_states_ref = initial_states.clone() if initial_states is not None else None
    activation = None if not silu_activation else "silu"
    out = causal_conv1d_fn(
        x,
        weight,
        bias,
        activation=activation,
        conv_states=initial_states,
        has_initial_state=has_initial_state_tensor,
    )
    out_ref, final_states_ref = causal_conv1d_ref(
        x_ref,
        weight_ref,
        bias_ref,
        initial_states=initial_states_ref,
        return_final_states=True,
        activation=activation,
    )
    if has_initial_state:
        assert initial_states is not None and final_states_ref is not None
        assert torch.allclose(initial_states, final_states_ref, rtol=rtol, atol=atol)
    assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)


@pytest.mark.parametrize("itype", [torch.bfloat16])
@pytest.mark.parametrize("silu_activation", [False, True])
@pytest.mark.parametrize("has_bias", [False, True])
@pytest.mark.parametrize("seqlen", [1])
@pytest.mark.parametrize("width", [4])
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
def test_causal_conv1d_update(dim, width, seqlen, has_bias, silu_activation, itype):
    device = "cuda"
    rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
    if itype == torch.bfloat16:
        rtol, atol = 1e-2, 5e-2

    batch = 2
    x = torch.randn(batch, dim, seqlen, device=device, dtype=itype)
    x_ref = x.clone()
    conv_state = torch.randn(batch, dim, width - 1, device=device, dtype=itype)

    weight = torch.randn(dim, width, device=device, dtype=itype)
    bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
    conv_state_ref = conv_state.detach().clone()
    activation = None if not silu_activation else "silu"
    out = causal_conv1d_update(x, conv_state, weight, bias, activation=activation)
    out_ref = causal_conv1d_update_ref(
        x_ref, conv_state_ref, weight, bias, activation=activation
    )

    assert torch.equal(conv_state, conv_state_ref)
    assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)


@pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("silu_activation", [False, True])
@pytest.mark.parametrize("has_bias", [False, True])
@pytest.mark.parametrize("seqlen", [1, 4, 5])
@pytest.mark.parametrize("width", [2, 3, 4])
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
# tests correctness in case subset of the sequences are padded
@pytest.mark.parametrize("with_padding", [True, False])
def test_causal_conv1d_update_with_batch_gather(
    with_padding, dim, width, seqlen, has_bias, silu_activation, itype
):
    device = "cuda"
    rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
    if itype == torch.bfloat16:
        rtol, atol = 1e-2, 5e-2

    batch_size = 3
    padding = 5 if with_padding else 0
    padded_batch_size = batch_size + padding
    total_entries = 10 * batch_size

    x = torch.randn(padded_batch_size, dim, 1, device=device, dtype=itype)
    x_ref = x.clone()

    conv_state_indices = torch.randperm(total_entries)[:batch_size].to(
        dtype=torch.int32, device=device
    )
    unused_states_bool = torch.ones(total_entries, dtype=torch.bool, device=device)
    unused_states_bool[conv_state_indices] = False
    padded_state_indices = torch.concat(
        [
            conv_state_indices,
            torch.as_tensor([PAD_SLOT_ID] * padding, dtype=torch.int32, device=device),
        ],
        dim=0,
    )
    conv_state = torch.randn(total_entries, dim, width - 1, device=device, dtype=itype)
    conv_state_for_padding_test = conv_state.clone()

    weight = torch.randn(dim, width, device=device, dtype=itype)
    bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
    conv_state_ref = conv_state[conv_state_indices, :].detach().clone()
    activation = None if not silu_activation else "silu"
    out = causal_conv1d_update(
        x,
        conv_state,
        weight,
        bias,
        activation=activation,
        conv_state_indices=padded_state_indices,
        pad_slot_id=PAD_SLOT_ID,
    )
    out_ref = causal_conv1d_update_ref(
        x_ref[:batch_size], conv_state_ref, weight, bias, activation=activation
    )

    assert torch.equal(conv_state[conv_state_indices, :], conv_state_ref)
    assert torch.allclose(out[:batch_size], out_ref, rtol=rtol, atol=atol)
    assert torch.equal(
        conv_state[unused_states_bool], conv_state_for_padding_test[unused_states_bool]
    )


@pytest.mark.parametrize("itype", [torch.bfloat16])
@pytest.mark.parametrize("silu_activation", [True])
@pytest.mark.parametrize("has_bias", [True])
@pytest.mark.parametrize("width", [4])
@pytest.mark.parametrize(
    "seqlen", [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 2049, 4096]
)
@pytest.mark.parametrize("dim", [64, 4096])
# tests correctness in case subset of the sequences are padded
@pytest.mark.parametrize("with_padding", [True, False])
def test_causal_conv1d_varlen(
    with_padding, dim, seqlen, width, has_bias, silu_activation, itype
):
    device = "cuda"
    torch.cuda.empty_cache()
    rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
    if itype == torch.bfloat16:
        rtol, atol = 1e-2, 5e-2

    seqlens = []
    batch_size = 4
    if seqlen < 10:
        batch_size = 1
    padding = 3 if with_padding else 0
    padded_batch_size = batch_size + padding
    nsplits = padded_batch_size - 1

    eos_pos = torch.randperm(seqlen - 1)[:nsplits].sort().values
    seqlens.append(
        torch.diff(
            torch.cat([torch.tensor([-1]), eos_pos, torch.tensor([seqlen - 1])])
        ).tolist()
    )
    assert sum(seqlens[-1]) == seqlen
    assert all(s > 0 for s in seqlens[-1])

    total_entries = batch_size * 10
    cumsum = torch.cumsum(torch.tensor(seqlens[0]), dim=0).to(torch.int32)
    cumsum = torch.concat([torch.tensor([0], dtype=torch.int32), cumsum], dim=0)
    x = torch.randn(1, 4096 + dim + 64, seqlen, device=device, dtype=itype)[
        :, 4096 : 4096 + dim, :
    ]
    weight = torch.randn(dim, width, device=device, dtype=itype)
    bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
    x_ref = x.clone()
    weight_ref = weight.clone()
    bias_ref = bias.clone() if bias is not None else None
    activation = None if not silu_activation else "silu"
    final_states = torch.randn(
        total_entries, dim, width - 1, device=x.device, dtype=x.dtype
    )
    final_states_ref = final_states.clone()
    has_initial_states = torch.randint(
        0, 2, (cumsum.shape[0] - 1,), dtype=torch.bool, device=x.device
    )
    state_indices = torch.randperm(total_entries, dtype=torch.int32, device=x.device)[
        :batch_size
    ]
    padded_state_indices = torch.concat(
        [
            state_indices,
            torch.as_tensor([PAD_SLOT_ID] * padding, dtype=torch.int32, device=device),
        ],
        dim=-1,
    )

    out = causal_conv1d_fn(
        x.squeeze(0),
        weight,
        bias,
        cumsum.cuda(),
        padded_state_indices,
        has_initial_states,
        final_states,
        activation,
        PAD_SLOT_ID,
    )
    out_ref = []
    out_ref_b = []

    splits = [torch.split(var, seqlens[0], dim=-1) for var in (x_ref)]
    for i in range(len(seqlens[0])):
        x_s = [v[i].unsqueeze(0) for v in splits][0]
        if padded_state_indices[i] == PAD_SLOT_ID:
            continue
        out_ref_b.append(
            causal_conv1d_ref(
                x_s,
                weight_ref,
                bias_ref,
                activation=activation,
                return_final_states=True,
                final_states_out=final_states_ref[padded_state_indices[i]].unsqueeze(0),
                initial_states=(
                    final_states_ref[padded_state_indices[i]].unsqueeze(0)
                    if has_initial_states[i]
                    else None
                ),
            )
        )
    out_ref.append(torch.cat([t[0] for t in out_ref_b], dim=2))
    out_ref_tensor = torch.cat(out_ref, dim=0)

    unpadded_out = out[:, : out_ref_tensor.shape[-1]]
    assert torch.allclose(unpadded_out, out_ref_tensor, rtol=rtol, atol=atol)
    assert torch.allclose(
        final_states[state_indices],
        final_states_ref[state_indices],
        rtol=rtol,
        atol=atol,
    )


if __name__ == "__main__":
    pytest.main([__file__])