openai_api_completions.ipynb 22.2 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
16
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
    "- `batches`\n",
17
18
    "\n",
    "Check out other tutorials to learn about vision APIs for vision-language models and embedding APIs for embedding models."
Chayenne's avatar
Chayenne committed
19
20
21
22
23
24
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
25
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
26
    "\n",
27
    "This code block is equivalent to executing \n",
Chayenne's avatar
Chayenne committed
28
    "\n",
29
30
31
32
33
34
    "```bash\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
    "--port 30000 --host 0.0.0.0\n",
    "```\n",
    "\n",
    "in your terminal and wait for the server to be ready."
Chayenne's avatar
Chayenne committed
35
36
37
38
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
39
   "execution_count": null,
40
   "metadata": {},
Chayenne's avatar
Chayenne committed
41
   "outputs": [],
Chayenne's avatar
Chayenne committed
42
   "source": [
43
44
45
46
47
48
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
Chayenne's avatar
Chayenne committed
49
50
    "\n",
    "server_process = execute_shell_command(\n",
Chayenne's avatar
Chayenne committed
51
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
52
53
    ")\n",
    "\n",
54
    "wait_for_server(\"http://localhost:30000\")"
Chayenne's avatar
Chayenne committed
55
56
   ]
  },
57
58
59
60
61
62
63
64
65
66
67
68
69
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
70
71
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
72
   "execution_count": null,
73
   "metadata": {},
Chayenne's avatar
Chayenne committed
74
   "outputs": [],
Chayenne's avatar
Chayenne committed
75
76
77
78
79
80
81
82
83
84
85
86
87
   "source": [
    "import openai\n",
    "\n",
    "client = openai.Client(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
88
89
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
90
91
92
93
94
95
96
97
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
98
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
99
100
101
102
103
104
    "\n",
    "Here is an example of a detailed chat completion request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
105
   "execution_count": null,
106
   "metadata": {},
Chayenne's avatar
Chayenne committed
107
   "outputs": [],
Chayenne's avatar
Chayenne committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
124
    "    max_tokens=128,  # Reasonable length for a concise response\n",
Chayenne's avatar
Chayenne committed
125
126
127
128
129
130
131
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
132
133
134
135
136
137
138
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
139
    "Streaming mode is also supported."
Lianmin Zheng's avatar
Lianmin Zheng committed
140
141
142
143
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
144
   "execution_count": null,
145
   "metadata": {},
Chayenne's avatar
Chayenne committed
146
   "outputs": [],
Lianmin Zheng's avatar
Lianmin Zheng committed
147
148
149
150
151
152
153
154
155
   "source": [
    "stream = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
Chayenne's avatar
Chayenne committed
156
157
158
159
160
161
162
163
164
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
165
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
166
167
168
169
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
170
   "execution_count": null,
171
   "metadata": {},
Chayenne's avatar
Chayenne committed
172
   "outputs": [],
Chayenne's avatar
Chayenne committed
173
174
175
176
177
178
179
180
181
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
182
183
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
184
185
186
187
188
189
190
191
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
192
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
193
194
195
196
197
198
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
199
   "execution_count": null,
200
   "metadata": {},
Chayenne's avatar
Chayenne committed
201
   "outputs": [],
Chayenne's avatar
Chayenne committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
216
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
217
218
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
219
220
221
222
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
223
    "## Structured Outputs (JSON, Regex, EBNF)\n",
224
    "You can specify a JSON schema, [regular expression](https://en.wikipedia.org/wiki/Regular_expression) or [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) to constrain the model output. The model output will be guaranteed to follow the given constraints. Only one constraint parameter (`json_schema`, `regex`, or `ebnf`) can be specified for a request.\n",
225
    "\n",
226
    "SGLang supports two grammar backends:\n",
227
    "\n",
228
    "- [Outlines](https://github.com/dottxt-ai/outlines) (default): Supports JSON schema and regular expression constraints.\n",
229
230
231
    "- [XGrammar](https://github.com/mlc-ai/xgrammar): Supports JSON schema and EBNF constraints.\n",
    "  - XGrammar currently uses the [GGML BNF format](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md)\n",
    "\n",
232
    "Initialize the XGrammar backend using `--grammar-backend xgrammar` flag\n",
233
234
    "```bash\n",
    "python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \\\n",
235
    "--port 30000 --host 0.0.0.0 --grammar-backend [xgrammar|outlines] # xgrammar or outlines (default: outlines)\n",
236
    "```\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
237
238
239
240
241
242
243
    "\n",
    "### JSON"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
244
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "json_schema = json.dumps(\n",
    "    {\n",
    "        \"type\": \"object\",\n",
    "        \"properties\": {\n",
    "            \"name\": {\"type\": \"string\", \"pattern\": \"^[\\\\w]+$\"},\n",
    "            \"population\": {\"type\": \"integer\"},\n",
    "        },\n",
    "        \"required\": [\"name\", \"population\"],\n",
    "    }\n",
    ")\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
Chayenne's avatar
Chayenne committed
263
264
265
266
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": \"Give me the information of the capital of France in the JSON format.\",\n",
    "        },\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    response_format={\n",
    "        \"type\": \"json_schema\",\n",
    "        \"json_schema\": {\"name\": \"foo\", \"schema\": json.loads(json_schema)},\n",
    "    },\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
283
    "### Regular expression (use default \"outlines\" backend)"
Lianmin Zheng's avatar
Lianmin Zheng committed
284
285
286
287
288
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
289
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
   "outputs": [],
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"What is the capital of France?\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=128,\n",
    "    extra_body={\"regex\": \"(Paris|London)\"},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### EBNF (use \"xgrammar\" backend)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# terminate the existing server(that's using default outlines backend) for this demo\n",
    "terminate_process(server_process)\n",
    "\n",
    "# start new server with xgrammar backend\n",
    "server_process = execute_shell_command(\n",
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30000 --host 0.0.0.0 --grammar-backend xgrammar\"\n",
    ")\n",
    "wait_for_server(\"http://localhost:30000\")\n",
    "\n",
    "# EBNF example\n",
    "ebnf_grammar = r\"\"\"\n",
    "        root ::= \"Hello\" | \"Hi\" | \"Hey\"\n",
    "        \"\"\"\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"system\", \"content\": \"You are a helpful EBNF test bot.\"},\n",
    "        {\"role\": \"user\", \"content\": \"Say a greeting.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=32,\n",
    "    extra_body={\"ebnf\": ebnf_grammar},\n",
    ")\n",
    "\n",
    "print_highlight(response.choices[0].message.content)"
   ]
  },
Chayenne's avatar
Chayenne committed
345
346
347
348
349
350
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Batches\n",
    "\n",
351
    "Batches API for chat completions and completions are also supported. You can upload your requests in `jsonl` files, create a batch job, and retrieve the results when the batch job is completed (which takes longer but costs less).\n",
Chayenne's avatar
Chayenne committed
352
353
354
355
356
357
358
359
360
361
362
363
    "\n",
    "The batches APIs are:\n",
    "\n",
    "- `batches`\n",
    "- `batches/{batch_id}/cancel`\n",
    "- `batches/{batch_id}`\n",
    "\n",
    "Here is an example of a batch job for chat completions, completions are similar.\n"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
364
   "execution_count": null,
365
   "metadata": {},
Chayenne's avatar
Chayenne committed
366
   "outputs": [],
Chayenne's avatar
Chayenne committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = [\n",
    "    {\n",
    "        \"custom_id\": \"request-1\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [\n",
    "                {\"role\": \"user\", \"content\": \"Tell me a joke about programming\"}\n",
    "            ],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "    {\n",
    "        \"custom_id\": \"request-2\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [{\"role\": \"user\", \"content\": \"What is Python?\"}],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "]\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    file_response = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_response = client.batches.create(\n",
    "    input_file_id=file_response.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
414
    "print_highlight(f\"Batch job created with ID: {batch_response.id}\")"
Chayenne's avatar
Chayenne committed
415
416
417
418
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
419
   "execution_count": null,
420
   "metadata": {},
Chayenne's avatar
Chayenne committed
421
   "outputs": [],
Chayenne's avatar
Chayenne committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
   "source": [
    "while batch_response.status not in [\"completed\", \"failed\", \"cancelled\"]:\n",
    "    time.sleep(3)\n",
    "    print(f\"Batch job status: {batch_response.status}...trying again in 3 seconds...\")\n",
    "    batch_response = client.batches.retrieve(batch_response.id)\n",
    "\n",
    "if batch_response.status == \"completed\":\n",
    "    print(\"Batch job completed successfully!\")\n",
    "    print(f\"Request counts: {batch_response.request_counts}\")\n",
    "\n",
    "    result_file_id = batch_response.output_file_id\n",
    "    file_response = client.files.content(result_file_id)\n",
    "    result_content = file_response.read().decode(\"utf-8\")\n",
    "\n",
    "    results = [\n",
    "        json.loads(line) for line in result_content.split(\"\\n\") if line.strip() != \"\"\n",
    "    ]\n",
    "\n",
    "    for result in results:\n",
441
442
    "        print_highlight(f\"Request {result['custom_id']}:\")\n",
    "        print_highlight(f\"Response: {result['response']}\")\n",
Chayenne's avatar
Chayenne committed
443
    "\n",
444
    "    print_highlight(\"Cleaning up files...\")\n",
Chayenne's avatar
Chayenne committed
445
446
447
    "    # Only delete the result file ID since file_response is just content\n",
    "    client.files.delete(result_file_id)\n",
    "else:\n",
448
    "    print_highlight(f\"Batch job failed with status: {batch_response.status}\")\n",
Chayenne's avatar
Chayenne committed
449
    "    if hasattr(batch_response, \"errors\"):\n",
450
    "        print_highlight(f\"Errors: {batch_response.errors}\")"
Chayenne's avatar
Chayenne committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It takes a while to complete the batch job. You can use these two APIs to retrieve the batch job status or cancel the batch job.\n",
    "\n",
    "1. `batches/{batch_id}`: Retrieve the batch job status.\n",
    "2. `batches/{batch_id}/cancel`: Cancel the batch job.\n",
    "\n",
    "Here is an example to check the batch job status."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
467
   "execution_count": null,
468
   "metadata": {},
Chayenne's avatar
Chayenne committed
469
   "outputs": [],
Chayenne's avatar
Chayenne committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(100):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
515
516
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
517
518
519
520
521
522
    "\n",
    "time.sleep(10)\n",
    "\n",
    "max_checks = 5\n",
    "for i in range(max_checks):\n",
    "    batch_details = client.batches.retrieve(batch_id=batch_job.id)\n",
523
524
525
526
527
528
529
    "\n",
    "    print_highlight(\n",
    "        f\"Batch job details (check {i+1} / {max_checks}) // ID: {batch_details.id} // Status: {batch_details.status} // Created at: {batch_details.created_at} // Input file ID: {batch_details.input_file_id} // Output file ID: {batch_details.output_file_id}\"\n",
    "    )\n",
    "    print_highlight(\n",
    "        f\"<strong>Request counts: Total: {batch_details.request_counts.total} // Completed: {batch_details.request_counts.completed} // Failed: {batch_details.request_counts.failed}</strong>\"\n",
    "    )\n",
Chayenne's avatar
Chayenne committed
530
531
532
533
534
535
536
537
538
539
540
541
542
    "\n",
    "    time.sleep(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is an example to cancel a batch job."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
543
   "execution_count": null,
544
   "metadata": {},
Chayenne's avatar
Chayenne committed
545
   "outputs": [],
Chayenne's avatar
Chayenne committed
546
547
548
549
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
Chayenne's avatar
Chayenne committed
550
    "import os\n",
Chayenne's avatar
Chayenne committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    "\n",
    "client = OpenAI(base_url=\"http://127.0.0.1:30000/v1\", api_key=\"None\")\n",
    "\n",
    "requests = []\n",
    "for i in range(500):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
592
593
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
594
595
596
597
598
    "\n",
    "time.sleep(10)\n",
    "\n",
    "try:\n",
    "    cancelled_job = client.batches.cancel(batch_id=batch_job.id)\n",
599
    "    print_highlight(f\"Cancellation initiated. Status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
600
601
602
603
604
605
    "    assert cancelled_job.status == \"cancelling\"\n",
    "\n",
    "    # Monitor the cancellation process\n",
    "    while cancelled_job.status not in [\"failed\", \"cancelled\"]:\n",
    "        time.sleep(3)\n",
    "        cancelled_job = client.batches.retrieve(batch_job.id)\n",
606
    "        print_highlight(f\"Current status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
607
608
609
    "\n",
    "    # Verify final status\n",
    "    assert cancelled_job.status == \"cancelled\"\n",
610
    "    print_highlight(\"Batch job successfully cancelled\")\n",
Chayenne's avatar
Chayenne committed
611
612
    "\n",
    "except Exception as e:\n",
613
    "    print_highlight(f\"Error during cancellation: {e}\")\n",
Chayenne's avatar
Chayenne committed
614
615
616
617
618
619
    "    raise e\n",
    "\n",
    "finally:\n",
    "    try:\n",
    "        del_response = client.files.delete(uploaded_file.id)\n",
    "        if del_response.deleted:\n",
620
    "            print_highlight(\"Successfully cleaned up input file\")\n",
Chayenne's avatar
Chayenne committed
621
622
623
    "        if os.path.exists(input_file_path):\n",
    "            os.remove(input_file_path)\n",
    "            print_highlight(\"Successfully deleted local batch_requests.jsonl file\")\n",
Chayenne's avatar
Chayenne committed
624
    "    except Exception as e:\n",
625
    "        print_highlight(f\"Error cleaning up: {e}\")\n",
Chayenne's avatar
Chayenne committed
626
627
628
629
630
    "        raise e"
   ]
  },
  {
   "cell_type": "code",
631
632
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
633
   "outputs": [],
Chayenne's avatar
Chayenne committed
634
635
636
637
638
639
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
640
641
642
643
644
645
646
647
648
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
649
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
650
651
652
653
654
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}