kvcacheio.py 3.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch


def transfer_kv_per_layer(
    src_k: torch.Tensor,
    dst_k: torch.Tensor,
    src_v: torch.Tensor,
    dst_v: torch.Tensor,
    src_indices: torch.Tensor,
    dst_indices: torch.Tensor,
    io_backend: str,
    page_size: int,
    item_size: int,
    block_quota: int = 2,
    num_warps_per_block: int = 32,
):
    if io_backend == "kernel":
        torch.ops.sgl_kernel.transfer_kv_per_layer(
            src_k,
            dst_k,
            src_v,
            dst_v,
            src_indices,
            dst_indices,
            item_size,
            block_quota,
            num_warps_per_block,
        )
    elif io_backend == "direct":
        torch.ops.sgl_kernel.transfer_kv_per_layer_direct(
            src_k, dst_k, src_v, dst_v, src_indices, dst_indices, page_size
        )
    else:
        raise ValueError(f"Unsupported io backend")


def transfer_kv_all_layer(
    src_k: torch.Tensor,
    dst_k: torch.Tensor,
    src_v: torch.Tensor,
    dst_v: torch.Tensor,
    src_indices: torch.Tensor,
    dst_indices: torch.Tensor,
    io_backend: str,
    page_size: int,
    item_size: int,
    num_layers: int,
    src_layer_offset: int,
    dst_layer_offset: int,
    block_quota: int = 2,
    num_warps_per_block: int = 32,
):
    if io_backend == "kernel":
        torch.ops.sgl_kernel.transfer_kv_all_layer(
            src_k,
            dst_k,
            src_v,
            dst_v,
            src_indices,
            dst_indices,
            item_size,
            num_layers,
            src_layer_offset,
            dst_layer_offset,
            block_quota,
            num_warps_per_block,
        )
    elif io_backend == "direct":
        torch.ops.sgl_kernel.transfer_kv_all_layer_direct(
            src_k, dst_k, src_v, dst_v, src_indices, dst_indices, page_size, num_layers
        )
    else:
        raise ValueError(f"Unsupported io backend")


def transfer_kv_per_layer_mla(
    src: torch.Tensor,
    dst: torch.Tensor,
    src_indices: torch.Tensor,
    dst_indices: torch.Tensor,
    io_backend: str,
    page_size: int,
    item_size: int,
    block_quota: int = 2,
    num_warps_per_block: int = 32,
):
    if io_backend == "kernel":
        torch.ops.sgl_kernel.transfer_kv_per_layer_mla(
            src,
            dst,
            src_indices,
            dst_indices,
            item_size,
            block_quota,
            num_warps_per_block,
        )
    elif io_backend == "direct":
        torch.ops.sgl_kernel.transfer_kv_per_layer_mla_direct(
            src, dst, src_indices, dst_indices, page_size
        )
    else:
        raise ValueError(f"Unsupported io backend")


def transfer_kv_all_layer_mla(
    src: torch.Tensor,
    dst: torch.Tensor,
    src_indices: torch.Tensor,
    dst_indices: torch.Tensor,
    io_backend: str,
    page_size: int,
    item_size: int,
    num_layers: int,
    src_layer_offset: int,
    dst_layer_offset: int,
    block_quota: int = 2,
    num_warps_per_block: int = 32,
):
    if io_backend == "kernel":
        torch.ops.sgl_kernel.transfer_kv_all_layer_mla(
            src,
            dst,
            src_indices,
            dst_indices,
            item_size,
            num_layers,
            src_layer_offset,
            dst_layer_offset,
            block_quota,
            num_warps_per_block,
        )
    elif io_backend == "direct":
        torch.ops.sgl_kernel.transfer_kv_all_layer_mla_direct(
            src, dst, src_indices, dst_indices, page_size, num_layers
        )
    else:
        raise ValueError(f"Unsupported io backend")