test_moe_deepep_eval_accuracy_large.py 2 KB
Newer Older
Jinyan Chen's avatar
Jinyan Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
Usage:
python -m unittest test_moe_deepep_eval_accuracy_large.TestMoEDeepEPEvalAccuracyLarge.test_mmlu
"""

import unittest
from types import SimpleNamespace

from sglang.srt.utils import kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval as run_eval_few_shot_gsm8k
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_DEEPPEP_MODEL_NAME_FOR_TEST,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    CustomTestCase,
    popen_launch_server,
)


class TestMoEDeepEPEvalAccuracyLarge(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_DEEPPEP_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--trust-remote-code",
                "--tp",
                "8",
                "--enable-deepep-moe",
                "--cuda-graph-max-bs",
                "128",
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_gsm8k(self):
        args = SimpleNamespace(
            num_shots=8,
            data_path=None,
            num_questions=200,
            parallel=64,
            max_new_tokens=512,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
        metrics = run_eval_few_shot_gsm8k(args)
        print(f"Eval accuracy of GSM8K: {metrics=}")

        self.assertGreater(metrics["accuracy"], 0.93)

    def test_mmlu(self):
        args = SimpleNamespace(
            base_url=self.base_url,
            model=self.model,
            eval_name="mmlu",
            num_examples=64,
            num_threads=32,
        )

        metrics = run_eval(args)
        print(f"Eval accuracy of MMLU: {metrics=}")
        self.assertGreater(metrics["score"], 0.87)


if __name__ == "__main__":
    unittest.main()