test_deepep_internode.py 18 KB
Newer Older
Jinyan Chen's avatar
Jinyan Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Copy from deepseek-ai/DeepEP/tests/test_internode.py

import os
import time

# noinspection PyUnresolvedReferences
import deep_ep

# Test compatibility with low latency functions
import test_deepep_low_latency
import torch
import torch.distributed as dist

from sglang.test.test_deepep_utils import (
    bench,
    calc_diff,
    create_grouped_scores,
    init_dist,
    inplace_unique,
    per_token_cast_back,
    per_token_cast_to_fp8,
)


def test_main(
    num_sms: int,
    local_rank: int,
    num_local_ranks: int,
    num_ranks: int,
    num_nodes: int,
    rank: int,
    buffer: deep_ep.Buffer,
    group: dist.ProcessGroup,
):
    # Settings
    num_tokens, hidden, num_topk_groups, num_topk, num_experts = (
        4096,
        7168,
        min(num_nodes, 4),
        8,
        (256 // num_ranks) * num_ranks,
    )
    assert num_experts % num_ranks == 0 and num_local_ranks == 8
    if local_rank == 0:
        print(
            f"[config] num_tokens={num_tokens}, hidden={hidden}, num_topk_groups={num_topk_groups}, num_topk={num_topk}",
            flush=True,
        )

    # Random data
    x = torch.ones((num_tokens, hidden), dtype=torch.bfloat16, device="cuda") * rank
    x_pure_rand = torch.randn((num_tokens, hidden), dtype=torch.bfloat16, device="cuda")
    x_e4m3 = per_token_cast_to_fp8(x)
    scores = (
        torch.randn((num_tokens, num_experts), dtype=torch.float32, device="cuda").abs()
        + 1
    )
    group_scores = scores.view(num_tokens, num_nodes, -1).amax(dim=-1)
    group_idx = torch.topk(
        group_scores, k=num_topk_groups, dim=-1, sorted=False
    ).indices
    masked_scores = create_grouped_scores(scores, group_idx, num_nodes)
    topk_idx = torch.topk(masked_scores, num_topk, dim=-1, largest=True, sorted=False)[
        1
    ]
    topk_weights = (
        torch.ones((num_tokens, num_topk), dtype=torch.float32, device="cuda") * rank
    )
    topk_weights_pure_rand = torch.randn(
        (num_tokens, num_topk), dtype=torch.float32, device="cuda"
    )
    rank_idx = topk_idx // (num_experts // num_ranks)
    rank_idx.masked_fill_(topk_idx == -1, -1)
    inplace_unique(rank_idx, num_ranks)
    rdma_rank_idx = rank_idx // num_local_ranks
    rdma_rank_idx.masked_fill_(rank_idx == -1, -1)
    inplace_unique(rdma_rank_idx, num_nodes)

    # RDMA dispatch counts
    rdma_idx = topk_idx // (num_experts // num_nodes)
    rdma_idx.masked_fill_(topk_idx == -1, -1)
    inplace_unique(rdma_idx, num_nodes)
    num_rdma_token_sent = rdma_idx.ne(-1).sum().item()

    # Expert meta
    num_tokens_per_expert = torch.zeros((num_experts,), dtype=torch.int, device="cuda")
    for i in range(num_experts):
        num_tokens_per_expert[i] = (topk_idx == i).sum()
    gbl_num_tokens_per_expert = num_tokens_per_expert.clone()
    dist.all_reduce(gbl_num_tokens_per_expert, group=group)

    # Rank layout meta
    num_tokens_per_rank = torch.empty((num_ranks,), dtype=torch.int, device="cuda")
    num_tokens_per_rdma_rank = torch.empty((num_nodes,), dtype=torch.int, device="cuda")
    token_idx_in_rank = torch.full(
        (num_ranks, num_tokens), -1, dtype=torch.long, device="cuda"
    )
    for i in range(num_ranks):
        num_tokens_per_rank[i] = (rank_idx == i).sum()
        token_sel = (rank_idx == i).max(dim=-1)[0]
        count = token_sel.sum().item()
        tokens = torch.sort(token_sel.to(torch.int), descending=True)[1]
        tokens[:count] = torch.sort(tokens[:count])[0]
        token_idx_in_rank[i][tokens[:count]] = torch.arange(
            count, dtype=torch.long, device="cuda"
        )
    for i in range(num_nodes):
        num_tokens_per_rdma_rank[i] = (rdma_rank_idx == i).sum()
    token_idx_in_rank = token_idx_in_rank.T.contiguous().to(torch.int)
    is_token_in_rank = token_idx_in_rank >= 0
    gbl_num_tokens_per_rank = num_tokens_per_rank.clone()
    dist.all_reduce(gbl_num_tokens_per_rank, group=group)

    (
        ref_num_tokens_per_rank,
        ref_num_tokens_per_rdma_rank,
        ref_num_tokens_per_expert,
        ref_is_token_in_rank,
        _,
    ) = buffer.get_dispatch_layout(topk_idx, num_experts)
    assert torch.allclose(ref_num_tokens_per_rank, num_tokens_per_rank)
    assert torch.allclose(ref_num_tokens_per_rdma_rank, num_tokens_per_rdma_rank)
    assert torch.allclose(ref_num_tokens_per_expert, num_tokens_per_expert)
    assert torch.allclose(ref_is_token_in_rank, is_token_in_rank)
    t = bench(lambda: buffer.get_dispatch_layout(topk_idx, num_experts))[0]
    if local_rank == 0:
        print(f"[layout] Kernel performance: {t * 1000:.3f} ms", flush=True)
        print("", flush=True)
    group.barrier()
    time.sleep(1)

    # Config
    rdma_buffer_size, nvl_buffer_size = 128, (720 if num_ranks in (144, 160) else 512)
    config = deep_ep.Config(num_sms, 8, nvl_buffer_size, 16, rdma_buffer_size)

    # Test dispatch
    # noinspection PyShadowingNames
    def check_data(check_x, recv_gbl_rank_prefix_sum):
        assert torch.allclose(check_x.amin(dim=1), check_x.amax(dim=1))
        check_start = 0
        for i in range(num_ranks):
            check_end = recv_gbl_rank_prefix_sum[i].item()
            assert (check_x[check_start:check_end, :].int() - i).sum().item() == 0
            check_start = check_end

    for previous_mode in (False, True):
        for async_mode in (False, True):
            for current_x in (x_pure_rand, x, x_e4m3):
                for with_topk in (False, True):
                    if local_rank == 0:
                        print(
                            f'[testing] Running with {"FP8" if isinstance(current_x, tuple) else "BF16"}, {"with" if with_topk else "without"} top-k (async={async_mode}, previous={previous_mode}) ...',
                            flush=True,
                            end="",
                        )
                    dispatch_args = {
                        "x": current_x,
                        "num_tokens_per_rank": num_tokens_per_rank,
                        "num_tokens_per_rdma_rank": num_tokens_per_rdma_rank,
                        "is_token_in_rank": is_token_in_rank,
                        "num_tokens_per_expert": num_tokens_per_expert,
                        "config": config,
                        "async_finish": async_mode,
                    }
                    if with_topk:
                        dispatch_args.update(
                            {
                                "topk_idx": topk_idx,
                                "topk_weights": (
                                    topk_weights_pure_rand
                                    if current_x is x_pure_rand
                                    else topk_weights
                                ),
                            }
                        )
                    if previous_mode:
                        dispatch_args.update({"previous_event": buffer.capture()})
                    (
                        recv_x,
                        recv_topk_idx,
                        recv_topk_weights,
                        recv_num_tokens_per_expert_list,
                        handle,
                        event,
                    ) = buffer.dispatch(**dispatch_args)
                    event.current_stream_wait() if async_mode else ()
                    recv_x = (
                        per_token_cast_back(*recv_x)
                        if isinstance(recv_x, tuple)
                        else recv_x
                    )

                    # Checks
                    recv_gbl_rank_prefix_sum = handle[-4]
                    assert gbl_num_tokens_per_rank[rank].item() == recv_x.size(
                        0
                    ), f"{gbl_num_tokens_per_rank[rank].item()} != {recv_x.size(0)}"
                    assert (
                        gbl_num_tokens_per_expert.view(num_ranks, -1)[rank].tolist()
                        == recv_num_tokens_per_expert_list
                    )
                    if current_x is not x_pure_rand:
                        check_data(recv_x, recv_gbl_rank_prefix_sum)
                    if with_topk:
                        # Check `topk_idx`
                        assert (
                            recv_topk_idx.eq(-1)
                            | (
                                (recv_topk_idx >= 0)
                                & (recv_topk_idx < (num_experts // num_ranks))
                            )
                        ).sum().item() == recv_topk_idx.numel()
                        for i, count in enumerate(recv_num_tokens_per_expert_list):
                            assert recv_topk_idx.eq(i).sum().item() == count

                        # Check `topk_weights`
                        if current_x is not x_pure_rand:
                            recv_topk_weights[recv_topk_idx.eq(-1)] = (
                                recv_topk_weights.amax(dim=1, keepdim=True).expand_as(
                                    recv_topk_weights
                                )[recv_topk_idx.eq(-1)]
                            )
                            check_data(recv_topk_weights, recv_gbl_rank_prefix_sum)

                    # Test cached dispatch (must without top-k staffs)
                    if not with_topk:
                        dispatch_args = {
                            "x": current_x,
                            "handle": handle,
                            "config": config,
                            "async_finish": async_mode,
                        }
                        if previous_mode:
                            dispatch_args.update({"previous_event": buffer.capture()})
                        recv_x, _, _, _, _, event = buffer.dispatch(**dispatch_args)
                        event.current_stream_wait() if async_mode else ()
                        recv_x = (
                            per_token_cast_back(*recv_x)
                            if isinstance(recv_x, tuple)
                            else recv_x
                        )
                        if current_x is not x_pure_rand:
                            check_data(recv_x, recv_gbl_rank_prefix_sum)

                    # Test combine
                    combine_args = {
                        "x": recv_x,
                        "handle": handle,
                        "config": config,
                        "async_finish": async_mode,
                    }
                    if with_topk:
                        combine_args.update({"topk_weights": recv_topk_weights})
                    if previous_mode:
                        dispatch_args.update({"previous_event": buffer.capture()})
                    combined_x, combined_topk_weights, event = buffer.combine(
                        **combine_args
                    )
                    event.current_stream_wait() if async_mode else ()
                    check_x = combined_x.float() / is_token_in_rank.sum(
                        dim=1
                    ).unsqueeze(1)
                    ref_x = x_pure_rand if current_x is x_pure_rand else x
                    assert calc_diff(check_x, ref_x) < 5e-6
                    if with_topk:
                        check_topk_weights = (
                            combined_topk_weights
                            if (current_x is x_pure_rand)
                            else (
                                combined_topk_weights
                                / is_token_in_rank.sum(dim=1).unsqueeze(1)
                            )
                        )
                        ref_topk_weights = (
                            topk_weights_pure_rand
                            if current_x is x_pure_rand
                            else topk_weights
                        )
                        assert calc_diff(check_topk_weights, ref_topk_weights) < 1e-9

                    # For later tuning
                    dispatch_bf16_rdma_send_bytes = num_rdma_token_sent * hidden * 2
                    dispatch_bf16_nvl_recv_bytes = recv_x.numel() * 2
                    combine_bf16_nvl_send_bytes = dispatch_bf16_nvl_recv_bytes
                    combine_bf16_rdma_recv_bytes = dispatch_bf16_rdma_send_bytes

                    if local_rank == 0:
                        print(" passed", flush=True)
    if local_rank == 0:
        print("", flush=True)

    # Tune dispatch performance
    best_dispatch_results = None
    fp8_factor = (1 + 4 / 128) / 2
    for current_x in (x_e4m3, x):
        best_time, best_results = 1e10, None
        rdma_send_bytes = (
            (dispatch_bf16_rdma_send_bytes * fp8_factor)
            if isinstance(current_x, tuple)
            else dispatch_bf16_rdma_send_bytes
        )
        nvl_recv_bytes = (
            (dispatch_bf16_nvl_recv_bytes * fp8_factor)
            if isinstance(current_x, tuple)
            else dispatch_bf16_nvl_recv_bytes
        )
        for nvl_chunk_size in range(4, 33, 4):
            for rdma_chunk_size in range(4, 33, 4):
                config = deep_ep.Config(
                    num_sms,
                    nvl_chunk_size,
                    nvl_buffer_size,
                    rdma_chunk_size,
                    rdma_buffer_size,
                )
                tune_args = {"x": current_x, "handle": handle, "config": config}
                t = bench(lambda: buffer.dispatch(**tune_args))[0]
                if t < best_time:
                    best_time, best_results = t, (
                        num_sms,
                        nvl_chunk_size,
                        rdma_chunk_size,
                    )
                if local_rank == 0:
                    print(
                        f"[tuning] SMs {num_sms}, NVL chunk {nvl_chunk_size}, RDMA chunk {rdma_chunk_size}: {rdma_send_bytes / 1e9 / t:.2f} GB/s (RDMA), {nvl_recv_bytes / 1e9 / t:.2f} GB/s (NVL) ",
                        flush=True,
                    )
        if local_rank == 0:
            print(
                f'[tuning] Best dispatch ({"FP8" if isinstance(current_x, tuple) else "BF16"}): SMs {best_results[0]}, NVL chunk {best_results[1]}, RDMA chunk {best_results[2]}: {rdma_send_bytes / 1e9 / best_time:.2f} GB/s (RDMA), {nvl_recv_bytes / 1e9 / best_time:.2f} GB/s (NVL)',
                flush=True,
            )
            print("", flush=True)

        if isinstance(current_x, tuple):
            # Gather FP8 the best config from rank 0
            best_dispatch_results = torch.tensor(
                [best_results[0], best_results[1], best_results[2]],
                dtype=torch.int32,
                device="cuda",
            )
            all_best_fp8_results_list = [
                torch.zeros_like(best_dispatch_results)
                for _ in range(torch.distributed.get_world_size())
            ]
            dist.all_gather(
                all_best_fp8_results_list, best_dispatch_results, group=group
            )
            best_dispatch_results = all_best_fp8_results_list[0].tolist()
    dispatch_config = deep_ep.Config(
        best_dispatch_results[0],
        best_dispatch_results[1],
        nvl_buffer_size,
        best_dispatch_results[2],
        rdma_buffer_size,
    )

    dispatch_args = {
        "x": x,
        "num_tokens_per_rank": num_tokens_per_rank,
        "num_tokens_per_rdma_rank": num_tokens_per_rdma_rank,
        "is_token_in_rank": is_token_in_rank,
        "num_tokens_per_expert": num_tokens_per_expert,
        "config": dispatch_config if dispatch_config is not None else config,
    }
    recv_x, _, _, _, handle, _ = buffer.dispatch(**dispatch_args)

    # Tune combine performance
    best_time, best_results = 1e10, None
    for nvl_chunk_size in range(1, 5, 1):
        for rdma_chunk_size in range(8, 33, 4):
            config = deep_ep.Config(
                num_sms,
                nvl_chunk_size,
                nvl_buffer_size,
                rdma_chunk_size,
                rdma_buffer_size,
            )
            tune_args = {"x": recv_x, "handle": handle, "config": config}
            t = bench(lambda: buffer.combine(**tune_args))[0]
            if local_rank == 0:
                print(
                    f"[tuning] SMs {num_sms}, NVL chunk {nvl_chunk_size}, RDMA chunk {rdma_chunk_size}: {combine_bf16_rdma_recv_bytes / 1e9 / t:.2f} GB/s (RDMA), {combine_bf16_nvl_send_bytes / 1e9 / t:.2f} GB/s (NVL) ",
                    flush=True,
                )
                if t < best_time:
                    best_time, best_results = t, (
                        num_sms,
                        nvl_chunk_size,
                        rdma_chunk_size,
                    )

    if local_rank == 0:
        print(
            f"[tuning] Best combine: SMs {best_results[0]}, NVL chunk {best_results[1]}, RDMA chunk {best_results[2]}: {combine_bf16_rdma_recv_bytes / 1e9 / best_time:.2f} GB/s (RDMA), {combine_bf16_nvl_send_bytes / 1e9 / best_time:.2f} GB/s (NVL)",
            flush=True,
        )
        print("", flush=True)


# noinspection PyUnboundLocalVariable
def test_loop(local_rank: int, num_local_ranks: int):
    num_nodes = int(os.getenv("WORLD_SIZE", 1))
    rank, num_ranks, group = init_dist(local_rank, num_local_ranks)
    test_ll_compatibility = False
    if test_ll_compatibility:
        ll_num_tokens, ll_hidden, ll_num_experts, ll_num_topk = 16, 5120, 256, 9

    buffer = deep_ep.Buffer(
        group,
        int(1e9),
        int(1e9),
        low_latency_mode=test_ll_compatibility,
        num_qps_per_rank=(ll_num_experts // num_ranks if test_ll_compatibility else 1),
    )
    assert num_local_ranks == 8 and num_ranks > 8
    torch.manual_seed(rank)

    for i in (24,):
        test_main(
            i, local_rank, num_local_ranks, num_ranks, num_nodes, rank, buffer, group
        )
        if local_rank == 0:
            print("", flush=True)

    # Test compatibility with low latency functions
    if test_ll_compatibility:
        buffer.clean_low_latency_buffer(ll_num_tokens, ll_hidden, ll_num_experts)
        test_deepep_low_latency.test_main(
            ll_num_tokens,
            ll_hidden,
            ll_num_experts,
            ll_num_topk,
            rank,
            num_ranks,
            group,
            buffer,
            seed=1,
        )


if __name__ == "__main__":
    num_processes = 8
    torch.multiprocessing.spawn(test_loop, args=(num_processes,), nprocs=num_processes)