gemma.py 12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

Liangsheng Yin's avatar
Liangsheng Yin committed
16
# Adapted from:
17
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/gemma.py#L1
Liangsheng Yin's avatar
Liangsheng Yin committed
18
"""Inference-only Gemma model compatible with HuggingFace weights."""
19
from typing import Iterable, Optional, Tuple
Liangsheng Yin's avatar
Liangsheng Yin committed
20
21
22

import torch
from torch import nn
23
from transformers import PretrainedConfig
24
from vllm.config import CacheConfig, LoRAConfig
Yuanhan Zhang's avatar
Yuanhan Zhang committed
25
from vllm.distributed import get_tensor_model_parallel_world_size
Liangsheng Yin's avatar
Liangsheng Yin committed
26
27
28
29
30
31
32
from vllm.model_executor.layers.activation import GeluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
    MergedColumnParallelLinear,
    QKVParallelLinear,
    RowParallelLinear,
)
Yuanhan Zhang's avatar
Yuanhan Zhang committed
33
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
Liangsheng Yin's avatar
Liangsheng Yin committed
34
35
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
36
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
Liangsheng Yin's avatar
Liangsheng Yin committed
37

Liangsheng Yin's avatar
Liangsheng Yin committed
38
39
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.radix_attention import RadixAttention
40
from sglang.srt.model_executor.forward_batch_info import InputMetadata
Liangsheng Yin's avatar
Liangsheng Yin committed
41

Liangsheng Yin's avatar
Liangsheng Yin committed
42
43
44
45
46
47

class GemmaMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
48
        quant_config: Optional[QuantizationConfig] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
49
50
51
52
53
54
    ) -> None:
        super().__init__()
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
55
            quant_config=quant_config,
Liangsheng Yin's avatar
Liangsheng Yin committed
56
57
        )
        self.down_proj = RowParallelLinear(
Yuanhan Zhang's avatar
Yuanhan Zhang committed
58
59
60
61
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
Liangsheng Yin's avatar
Liangsheng Yin committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        )
        self.act_fn = GeluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x


class GemmaAttention(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        head_dim: int,
        layer_id: int = 0,
        max_position_embeddings: int = 8192,
        rope_theta: float = 10000,
82
        quant_config: Optional[QuantizationConfig] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            # Number of KV heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_kv_heads % tp_size == 0
        else:
            # Number of KV heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = head_dim
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5
        self.rope_theta = rope_theta

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=False,
112
            quant_config=quant_config,
Liangsheng Yin's avatar
Liangsheng Yin committed
113
114
115
116
117
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
118
            quant_config=quant_config,
Liangsheng Yin's avatar
Liangsheng Yin committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position_embeddings,
            base=self.rope_theta,
            is_neox_style=True,
        )
        self.attn = RadixAttention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            layer_id=layer_id,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v, input_metadata)
        output, _ = self.o_proj(attn_output)
        return output


class GemmaDecoderLayer(nn.Module):
    def __init__(
        self,
153
        config: PretrainedConfig,
Liangsheng Yin's avatar
Liangsheng Yin committed
154
        layer_id: int = 0,
155
        quant_config: Optional[QuantizationConfig] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
156
157
158
159
160
161
162
163
164
165
166
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = GemmaAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            num_kv_heads=config.num_key_value_heads,
            head_dim=config.head_dim,
            layer_id=layer_id,
            max_position_embeddings=config.max_position_embeddings,
            rope_theta=config.rope_theta,
167
            quant_config=quant_config,
Liangsheng Yin's avatar
Liangsheng Yin committed
168
169
170
171
        )
        self.mlp = GemmaMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
172
            quant_config=quant_config,
Liangsheng Yin's avatar
Liangsheng Yin committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        input_metadata: InputMetadata,
        residual: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            input_metadata=input_metadata,
        )

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual


class GemmaModel(nn.Module):
    def __init__(
        self,
207
        config: PretrainedConfig,
208
        quant_config: Optional[QuantizationConfig] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
209
210
211
212
213
214
215
216
217
218
    ) -> None:
        super().__init__()
        self.config = config

        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
        )
        self.layers = nn.ModuleList(
            [
219
                GemmaDecoderLayer(config, i, quant_config=quant_config)
Liangsheng Yin's avatar
Liangsheng Yin committed
220
221
222
223
224
225
226
227
228
229
                for i in range(config.num_hidden_layers)
            ]
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
230
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
231
    ) -> torch.Tensor:
232
        if input_embeds is None:
Liangsheng Yin's avatar
Liangsheng Yin committed
233
234
            hidden_states = self.embed_tokens(input_ids)
        else:
235
            hidden_states = input_embeds
Liangsheng Yin's avatar
Liangsheng Yin committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

        # Normalize the embedding by sqrt(hidden_size)
        hidden_states *= self.config.hidden_size**0.5

        residual = None
        for i in range(len(self.layers)):
            layer = self.layers[i]
            hidden_states, residual = layer(
                positions,
                hidden_states,
                input_metadata,
                residual,
            )
        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states


class GemmaForCausalLM(nn.Module):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    # LoRA specific attributes
    supported_lora_modules = [
        "qkv_proj",
        "o_proj",
        "gate_up_proj",
        "down_proj",
    ]
    # Gemma does not apply LoRA to the embedding layer.
    embedding_modules = {}
    embedding_padding_modules = []

    def __init__(
        self,
279
        config: PretrainedConfig,
280
        quant_config: Optional[QuantizationConfig] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
281
        lora_config: Optional[LoRAConfig] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
282
        cache_config: Optional[CacheConfig] = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
283
284
285
286
    ) -> None:
        del lora_config  # Unused.
        super().__init__()
        self.config = config
287
288
        self.quant_config = quant_config
        self.model = GemmaModel(config, quant_config=quant_config)
Liangsheng Yin's avatar
Liangsheng Yin committed
289
290
291
292
293
294
295
296
        self.logits_processor = LogitsProcessor(config)

    @torch.no_grad()
    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        input_metadata: InputMetadata,
297
        input_embeds: torch.Tensor = None,
Liangsheng Yin's avatar
Liangsheng Yin committed
298
    ) -> torch.Tensor:
299
        hidden_states = self.model(input_ids, positions, input_metadata, input_embeds)
Liangsheng Yin's avatar
Liangsheng Yin committed
300
301
302
303
        return self.logits_processor(
            input_ids, hidden_states, self.model.embed_tokens.weight, input_metadata
        )

304
    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
Liangsheng Yin's avatar
Liangsheng Yin committed
305
306
307
308
309
310
311
312
313
314
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("qkv_proj", "q_proj", "q"),
            ("qkv_proj", "k_proj", "k"),
            ("qkv_proj", "v_proj", "v"),
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
        ]
        params_dict = dict(self.named_parameters())
        loaded_params = set()
315
        for name, loaded_weight in weights:
Liangsheng Yin's avatar
Liangsheng Yin committed
316
317
318
319
320
321
322
323
324
325
326
327
            for param_name, shard_name, shard_id in stacked_params_mapping:
                if shard_name not in name:
                    continue
                name = name.replace(shard_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
328
329
330
331
                # lm_head is not used in vllm as it is tied with embed_token.
                # To prevent errors, skip loading lm_head.weight.
                if "lm_head.weight" in name:
                    continue
Liangsheng Yin's avatar
Liangsheng Yin committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                # GemmaRMSNorm is different from Llama's in that it multiplies
                # (1 + weight) to the output, instead of just weight.
                if "norm.weight" in name:
                    loaded_weight += 1.0
                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader", default_weight_loader)
                weight_loader(param, loaded_weight)
            loaded_params.add(name)
        unloaded_params = params_dict.keys() - loaded_params
        if unloaded_params:
            raise RuntimeError(
                "Some weights are not initialized from checkpoints: "
                f"{unloaded_params}"
            )


EntryClass = GemmaForCausalLM