export_deepseek_nextn.py 3.78 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
"""
Export NextN layer for DeepSeek-V3/R1 model. The exported model can be used for speculative decoding.

Usage:
python3 export_deepseek_nextn.py --input-dir /path/to/DeepSeek-V3 --output-dir /path/to/DeepSeek-V3-NextN
"""

import argparse
import json
import os
import shutil

from safetensors import safe_open
from safetensors.torch import save_file
from transformers import AutoConfig


def get_nexn_layer_id(config):
    if not hasattr(config, "num_hidden_layers"):
        raise ValueError("'num_hidden_layers' not found in model config.")
    return config.num_hidden_layers


def update_and_save_config(config, output_dir):
    new_config = config.to_dict()
    new_config.update(
        {
            "num_hidden_layers": 0,
            "architectures": ["DeepseekV3ForCausalLMNextN"],
        }
    )
    with open(os.path.join(output_dir, "config.json"), "w") as f:
        json.dump(new_config, f, indent=2, ensure_ascii=False, sort_keys=True)


def copy_non_safetensors_files(input_dir, output_dir):
    for filename in os.listdir(input_dir):
        src_file_path = os.path.join(input_dir, filename)
        if os.path.isfile(src_file_path) and not filename.endswith(".safetensors"):
            dst_file_path = os.path.join(output_dir, filename)
            shutil.copy2(src_file_path, dst_file_path)
    print(f"All non-safetensors files have been copied to {output_dir}")


def export_nextn_layer_parameters(input_dir, output_dir, nexn_layer_id):
    prefix = f"model.layers.{nexn_layer_id}"
    output_path = os.path.join(output_dir, "nextn_layer_parameters.safetensors")
    params = {}
    for filename in os.listdir(input_dir):
        if not filename.endswith(".safetensors"):
            continue

        file_path = os.path.join(input_dir, filename)
        print(f"Processing: {filename}")

        try:
            with safe_open(file_path, framework="pt") as f:
                matching_keys = [k for k in f.keys() if k.startswith(prefix)]

                if not matching_keys:
                    print(f"  No parameters starting with '{prefix}' found")
                    continue

                for key in matching_keys:
                    new_key = key.replace(prefix, "model.layers.0")
                    params[new_key] = f.get_tensor(key)

        except Exception as e:
            print(f"  Error processing {filename}: {str(e)}")

    if params:
        print(f"Saving {len(params)} parameters to {output_path}")
        save_file(params, output_path)
    else:
        print("No matching parameters found.")

    # Update safetensors index
    index_path = os.path.join(output_dir, "model.safetensors.index.json")
    print(f"Updating safetensors index to {index_path}")
    index_data = {"weight_map": {}}
    for key in params:
        index_data["weight_map"][key] = "nextn_layer_parameters.safetensors"
    with open(index_path, "w") as f:
        json.dump(index_data, f, indent=4)

    print("All done.")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Export NextN layer paramerters for DeepSeek-V3/R1"
    )
    parser.add_argument(
        "--input-dir",
        type=str,
        required=True,
        help="Input HF model directory.",
    )
    parser.add_argument(
        "--output-dir",
        type=str,
        required=True,
        help="Output nextn model directory.",
    )
    args = parser.parse_args()

    config = AutoConfig.from_pretrained(args.input_dir, trust_remote_code=True)
    assert config.num_nextn_predict_layers == 1, "Only 1 nextn layer is supported."
    nextn_layer_id = get_nexn_layer_id(config)
    os.makedirs(args.output_dir, exist_ok=True)
    copy_non_safetensors_files(args.input_dir, args.output_dir)
    update_and_save_config(config, args.output_dir)
    export_nextn_layer_parameters(args.input_dir, args.output_dir, nextn_layer_id)