offline_batch_inference.py 933 Bytes
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import sglang as sgl


def main():
    # Sample prompts.
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]
    # Create a sampling params object.
    sampling_params = {"temperature": 0.8, "top_p": 0.95}

    # Create an LLM.
    llm = sgl.Engine(model_path="meta-llama/Meta-Llama-3.1-8B-Instruct")

    outputs = llm.generate(prompts, sampling_params)
    # Print the outputs.
    for prompt, output in zip(prompts, outputs):
        print("===============================")
        print(f"Prompt: {prompt}\nGenerated text: {output['text']}")


# The __main__ condition is necessary here because we use "spawn" to create subprocesses
# Spawn starts a fresh program every time, if there is no __main__, it will run into infinite loop to keep spawning processes from sgl.Engine
if __name__ == "__main__":
    main()