decode.cpp 38.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include "common.h"
#include "vec.h"

namespace {

// [NOTE] TODO list for this kernel:
//   1. tune the value for BLOCK_N
//   2. planning for {batches, num_heads, num_kv_splits}
//      and use actual num_kv_splits for small seq length
//   3. try fast impl of `.tanh()`
//   4. provide amx kernel for index_gemm_kernel_nn when M = 16
//

inline void fill_stub(float* __restrict__ out, float val, int64_t size) {
  using Vec = at::vec::Vectorized<float>;
  const Vec data_vec(val);
  at::vec::map<float>([data_vec](Vec out) { return out = data_vec; }, out, out, size);
}

template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const float* __restrict__ acc, float s, int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  using fVec = at::vec::Vectorized<float>;
  const fVec s_fvec = fVec(s);
  int64_t d = 0;
  for (; d <= size - bVec::size(); d += bVec::size()) {
    fVec a_fvec0 = fVec::loadu(acc + d) * s_fvec;
    fVec a_fvec1 = fVec::loadu(acc + d + fVec::size()) * s_fvec;
    bVec out_bvec = convert_from_float_ext<scalar_t>(a_fvec0, a_fvec1);
    out_bvec.store(out + d);
  }
  for (; d < size; ++d) {
    out[d] = static_cast<scalar_t>(acc[d] * s);
  }
}

37
38
39
40
41
42
43
44
45
46
47
48
49
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const scalar_t* __restrict__ src, int64_t size) {
  using bVec = at::vec::Vectorized<scalar_t>;
  int64_t d = 0;
  for (; d <= size - bVec::size(); d += bVec::size()) {
    bVec out_bvec = bVec::loadu(src + d);
    out_bvec.store(out + d);
  }
  for (; d < size; ++d) {
    out[d] = src[d];
  }
}

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// GEMM handles query @ key (indexed) x scale
//   A : [M, K]
//   B : [N, K] indexed
//   C : [M, N]
//
template <typename scalar_t, typename index_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nt {
  static inline void apply(
      const scalar_t* __restrict__ A,
      const scalar_t* __restrict__ B,
      float* __restrict__ C,
      const index_t* __restrict__ indices,
      float scale,
      int64_t lda,
      int64_t ldb,
      int64_t ldc,
      int64_t K,
      int64_t max_tokens) {
    for (int64_t m = 0; m < BLOCK_M; ++m) {
      for (int64_t n = 0; n < BLOCK_N; ++n) {
        float sum = 0.f;
        int64_t b_idx = indices[n];
        TORCH_CHECK(b_idx < max_tokens, "token index out of scope!");
        for (int64_t k = 0; k < K; ++k) {
          sum += scale * static_cast<float>(A[m * lda + k]) * static_cast<float>(B[b_idx * ldb + k]);
        }
        C[m * ldc + n] = sum;
      }
    }
  }
};

#if defined(CPU_CAPABILITY_AVX512)
template <typename index_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nt<at::BFloat16, index_t, BLOCK_M, BLOCK_N> {
  static inline void apply(
      const at::BFloat16* __restrict__ A,
      const at::BFloat16* __restrict__ B,
      float* __restrict__ C,
      const index_t* __restrict__ indices,
      float scale,
      int64_t lda,
      int64_t ldb,
      int64_t ldc,
      int64_t K,
      int64_t max_tokens) {
    constexpr int ROWS = BLOCK_M;
    constexpr int COLS = BLOCK_N;

    __m512bh va;
    __m512bh vb[COLS];
    __m512 vc[ROWS * COLS];
    __m512 vscale = _mm512_set1_ps(scale);

    auto loadc = [&](auto i) { vc[i] = _mm512_setzero_ps(); };
    Unroll<ROWS * COLS>{}(loadc);

    // for main loop
    auto compute = [&](auto i, int64_t k) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      if constexpr (col == 0) {
        va = (__m512bh)(_mm512_loadu_si512(A + row * lda + k));
      }
      if constexpr (row == 0) {
        if constexpr (col + 1 < COLS) {
          int64_t b_idx_prefetch = indices[col + 1];
          _mm_prefetch(B + b_idx_prefetch * ldb + k, _MM_HINT_T0);
        }
        int64_t b_idx = indices[col];
        TORCH_CHECK(b_idx < max_tokens, "token index out of scope!");
        vb[col] = (__m512bh)(_mm512_loadu_si512(B + b_idx * ldb + k));
      }
      vc[i] = _mm512_dpbf16_ps(vc[i], va, vb[col]);
    };

    // for remainder
    auto compute2 = [&](auto i, int64_t k, __mmask32 mask) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      if constexpr (col == 0) {
        va = (__m512bh)(_mm512_maskz_loadu_epi16(mask, A + row * lda + k));
      }
      if constexpr (row == 0) {
        int64_t b_idx = indices[col];
        TORCH_CHECK(b_idx < max_tokens, "token index out of scope!");
        vb[col] = (__m512bh)(_mm512_maskz_loadu_epi16(mask, B + b_idx * ldb + k));
      }
      vc[i] = _mm512_dpbf16_ps(vc[i], va, vb[col]);
    };

    int64_t k = 0;
    for (; k <= K - 32; k += 32) {
      Unroll<ROWS * COLS>{}(compute, k);
    }
    int64_t count = K - k;
    if (count > 0) {
      __mmask32 mask = (1ULL << count) - 1;
      Unroll<ROWS * COLS>{}(compute2, k, mask);
    }

    auto storec = [&](auto i) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;
      C[row * ldc + col] = _mm512_reduce_add_ps(_mm512_mul_ps(vc[i], vscale));
    };
    Unroll<ROWS * COLS>{}(storec);
  }
};
#endif

#define LAUNCH_TINYGEMM_KERNEL_NT(MB_SIZE, NB_SIZE)               \
  tinygemm_kernel_nt<scalar_t, index_t, MB_SIZE, NB_SIZE>::apply( \
      A + mb_start * lda, B, C + mb_start * ldc + nb_start, indices + nb_start, scale, lda, ldb, ldc, K, max_tokens);

// this is used when N isn't multiple of 16,
// N corresponds to `head_size_v` which should be 16x
template <typename scalar_t, typename index_t>
inline void tinygemm_kernel_nn_scalar(
    const float* __restrict__ A,
    const scalar_t* __restrict__ B,
    float* __restrict__ C,
    const index_t* __restrict__ indices,
    const float* __restrict__ scale,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc,
    int64_t max_tokens) {
  for (int64_t m = 0; m < M; ++m) {
    for (int64_t n = 0; n < N; ++n) {
      C[m * ldc + n] *= scale[m];
      for (int64_t k = 0; k < K; ++k) {
        int64_t b_idx = indices[k];
        TORCH_CHECK(b_idx < max_tokens, "token index out of scope!");
        C[m * ldc + n] += A[m * lda + k] * static_cast<float>(B[b_idx * ldb + n]);
      }
    }
  }
}

// GEMM handles v' * scale + attn @ value (indexed)
//   A : [M, K]
//   B : [K, N] indexed
//   C :[M, N]
//
template <typename scalar_t, typename index_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn {
  static inline void apply(
      const float* __restrict__ A,
      const scalar_t* __restrict__ B,
      float* __restrict__ C,
      const index_t* __restrict__ indices,
      const float* __restrict__ scale,
      int64_t lda,
      int64_t ldb,
      int64_t ldc,
      int64_t K,
      int64_t max_tokens) {
    tinygemm_kernel_nn_scalar(A, B, C, indices, scale, BLOCK_M, BLOCK_N, K, lda, ldb, ldc, max_tokens);
  }
};

#if defined(CPU_CAPABILITY_AVX512)
template <typename index_t, int BLOCK_M, int BLOCK_N>
struct tinygemm_kernel_nn<at::BFloat16, index_t, BLOCK_M, BLOCK_N> {
  static inline void apply(
      const float* __restrict__ A,
      const at::BFloat16* __restrict__ B,
      float* __restrict__ C,
      const index_t* __restrict__ indices,
      const float* __restrict__ scale,
      int64_t lda,
      int64_t ldb,
      int64_t ldc,
      int64_t K,
      int64_t max_tokens) {
    constexpr int ROWS = BLOCK_M;
    constexpr int COLS = BLOCK_N / 16;

    __m512 va;
    __m512 vb[COLS];
    __m512 vc[ROWS * COLS];
    __m512 vscale;

    auto loadc = [&](auto i) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
      if constexpr (col == 0) {
        vscale = _mm512_set1_ps(scale[row]);
      }
#pragma GCC diagnostic pop
      vc[i] = _mm512_loadu_ps(C + row * ldc + col * 16);
      vc[i] = _mm512_mul_ps(vc[i], vscale);
    };
    Unroll<ROWS * COLS>{}(loadc);

    auto compute = [&](auto i, int64_t k) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;

      if constexpr (col == 0) {
        va = _mm512_set1_ps(A[row * lda + k]);
      }
      if constexpr (row == 0) {
        if (k + 1 < K) {
          int64_t b_idx_prefetch = indices[k + 1];
          _mm_prefetch(B + b_idx_prefetch * ldb + col * 16, _MM_HINT_T0);
        }
        int64_t b_idx = indices[k];
        TORCH_CHECK(b_idx < max_tokens, "token index out of scope!");

        // for COLS = 2, 4, 6, 8 use 512 bit load
        // for COLS = 1, 3, 5, 7 use 256 bit load
        if constexpr (COLS % 2 == 0) {
          if constexpr (col % 2 == 0) {
            __m512i b16 = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(B + b_idx * ldb + col * 16));
            vb[col + 0] = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(b16, 0));
            vb[col + 1] = CVT_BF16_TO_FP32(_mm512_extracti32x8_epi32(b16, 1));
          }
        } else {
          __m256i b16 = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(B + b_idx * ldb + col * 16));
          vb[col] = CVT_BF16_TO_FP32(b16);
        }
      }
      vc[i] = _mm512_fmadd_ps(va, vb[col], vc[i]);
    };

    for (int64_t k = 0; k < K; ++k) {
      Unroll<ROWS * COLS>{}(compute, k);
    }

    auto storec = [&](auto i) {
      constexpr int row = i / COLS;
      constexpr int col = i % COLS;
      _mm512_storeu_ps(C + row * ldc + col * 16, vc[i]);
    };
    Unroll<ROWS * COLS>{}(storec);
  }
};
#endif

#define LAUNCH_TINYGEMM_KERNEL_NN(MB_SIZE, NB_SIZE)               \
  tinygemm_kernel_nn<scalar_t, index_t, MB_SIZE, NB_SIZE>::apply( \
      A + mb_start * lda,                                         \
      B + nb_start,                                               \
      C + mb_start * ldc + nb_start,                              \
      indices,                                                    \
      scale + mb_start,                                           \
      lda,                                                        \
      ldb,                                                        \
      ldc,                                                        \
      K,                                                          \
      max_tokens);

template <typename scalar_t, typename index_t>
void index_gemm_kernel_nt(
    const scalar_t* __restrict__ A,
    const scalar_t* __restrict__ B,
    float* __restrict__ C,
    const index_t* __restrict__ indices,
    float scale,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc,
    int64_t max_tokens) {
  // pattern: 1-8-8
  if (M == 1) {
    constexpr int64_t BLOCK_N = 8;
    const int64_t NB = div_up(N, BLOCK_N);
    int64_t mb_start = 0, lda = 1, ldc = 1;

    for (int64_t nb = 0; nb < NB; ++nb) {
      int64_t nb_start = nb * BLOCK_N;
      int64_t nb_size = std::min(BLOCK_N, N - nb_start);

      switch (nb_size) {
        case 1:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 1);
          break;
        case 2:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 2);
          break;
        case 3:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 3);
          break;
        case 4:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 4);
          break;
        case 5:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 5);
          break;
        case 6:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 6);
          break;
        case 7:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 7);
          break;
        case 8:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 8);
          break;
        default:
          TORCH_CHECK(false, "Unexpected block size, 1x", "nb_size");
      }
    }
    return;
  }

  // pattern: 1-6-24
  constexpr int64_t BLOCK_M = 4;
  constexpr int64_t BLOCK_N = 6;
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);

  for (int64_t mb = 0; mb < MB; ++mb) {
    int64_t mb_start = mb * BLOCK_M;
    int64_t mb_size = std::min(BLOCK_M, M - mb_start);
    for (int64_t nb = 0; nb < NB; ++nb) {
      int64_t nb_start = nb * BLOCK_N;
      int64_t nb_size = std::min(BLOCK_N, N - nb_start);

      switch (mb_size << 4 | nb_size) {
        // mb_size = 1
        case 0x11:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 1);
          break;
        case 0x12:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 2);
          break;
        case 0x13:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 3);
          break;
        case 0x14:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 4);
          break;
        case 0x15:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 5);
          break;
        case 0x16:
          LAUNCH_TINYGEMM_KERNEL_NT(1, 6);
          break;
        // mb_size = 2
        case 0x21:
          LAUNCH_TINYGEMM_KERNEL_NT(2, 1);
          break;
        case 0x22:
          LAUNCH_TINYGEMM_KERNEL_NT(2, 2);
          break;
        case 0x23:
          LAUNCH_TINYGEMM_KERNEL_NT(2, 3);
          break;
        case 0x24:
          LAUNCH_TINYGEMM_KERNEL_NT(2, 4);
          break;
        case 0x25:
          LAUNCH_TINYGEMM_KERNEL_NT(2, 5);
          break;
        case 0x26:
          LAUNCH_TINYGEMM_KERNEL_NT(2, 6);
          break;
        // mb_size = 3
        case 0x31:
          LAUNCH_TINYGEMM_KERNEL_NT(3, 1);
          break;
        case 0x32:
          LAUNCH_TINYGEMM_KERNEL_NT(3, 2);
          break;
        case 0x33:
          LAUNCH_TINYGEMM_KERNEL_NT(3, 3);
          break;
        case 0x34:
          LAUNCH_TINYGEMM_KERNEL_NT(3, 4);
          break;
        case 0x35:
          LAUNCH_TINYGEMM_KERNEL_NT(3, 5);
          break;
        case 0x36:
          LAUNCH_TINYGEMM_KERNEL_NT(3, 6);
          break;
        // mb_size = 4
        case 0x41:
          LAUNCH_TINYGEMM_KERNEL_NT(4, 1);
          break;
        case 0x42:
          LAUNCH_TINYGEMM_KERNEL_NT(4, 2);
          break;
        case 0x43:
          LAUNCH_TINYGEMM_KERNEL_NT(4, 3);
          break;
        case 0x44:
          LAUNCH_TINYGEMM_KERNEL_NT(4, 4);
          break;
        case 0x45:
          LAUNCH_TINYGEMM_KERNEL_NT(4, 5);
          break;
        case 0x46:
          LAUNCH_TINYGEMM_KERNEL_NT(4, 6);
          break;
        default:
          TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
      }
    }
  }
}

template <typename scalar_t, typename index_t>
void index_gemm_kernel_nn(
    const float* __restrict__ A,
    const scalar_t* __restrict__ B,
    float* __restrict__ C,
    const index_t* __restrict__ indices,
    float* __restrict__ scale,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc,
    int64_t max_tokens) {
  constexpr int kVecSize = 16;
  if ((N & (kVecSize - 1)) != 0) {
    tinygemm_kernel_nn_scalar(A, B, C, indices, scale, M, N, K, lda, ldb, ldc, max_tokens);
    return;
  }

  // pattern: 1-8-8
  if (M == 1) {
    constexpr int64_t BLOCK_N = 8 * kVecSize;
    const int64_t NB = div_up(N, BLOCK_N);
    int64_t mb_start = 0, lda = 1, ldc = 1;

    for (int64_t nb = 0; nb < NB; ++nb) {
      int64_t nb_start = nb * BLOCK_N;
      int64_t nb_size = std::min(BLOCK_N, N - nb_start);

      switch (nb_size >> 4) {
        case 1:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 16);
          break;
        case 2:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 32);
          break;
        case 3:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 48);
          break;
        case 4:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 64);
          break;
        case 5:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 80);
          break;
        case 6:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 96);
          break;
        case 7:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 112);
          break;
        case 8:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 128);
          break;
        default:
          TORCH_CHECK(false, "Unexpected block size, 1x", "nb_size");
      }
    }
    return;
  }

  constexpr int64_t BLOCK_M = 4;
  constexpr int64_t BLOCK_N = 6 * kVecSize;
  const int64_t MB = div_up(M, BLOCK_M);
  const int64_t NB = div_up(N, BLOCK_N);

  for (int64_t mb = 0; mb < MB; ++mb) {
    int64_t mb_start = mb * BLOCK_M;
    int64_t mb_size = std::min(BLOCK_M, M - mb_start);
    for (int64_t nb = 0; nb < NB; ++nb) {
      int64_t nb_start = nb * BLOCK_N;
      int64_t nb_size = std::min(BLOCK_N, N - nb_start);

      switch (mb_size << 4 | nb_size >> 4) {
        // mb_size = 1
        case 0x11:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 16);
          break;
        case 0x12:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 32);
          break;
        case 0x13:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 48);
          break;
        case 0x14:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 64);
          break;
        case 0x15:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 80);
          break;
        case 0x16:
          LAUNCH_TINYGEMM_KERNEL_NN(1, 96);
          break;
        // mb_size = 2
        case 0x21:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 16);
          break;
        case 0x22:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 32);
          break;
        case 0x23:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 48);
          break;
        case 0x24:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 64);
          break;
        case 0x25:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 80);
          break;
        case 0x26:
          LAUNCH_TINYGEMM_KERNEL_NN(2, 96);
          break;
        // mb_size = 3
        case 0x31:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 16);
          break;
        case 0x32:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 32);
          break;
        case 0x33:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 48);
          break;
        case 0x34:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 64);
          break;
        case 0x35:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 80);
          break;
        case 0x36:
          LAUNCH_TINYGEMM_KERNEL_NN(3, 96);
          break;
        // mb_size = 4
        case 0x41:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 16);
          break;
        case 0x42:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 32);
          break;
        case 0x43:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 48);
          break;
        case 0x44:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 64);
          break;
        case 0x45:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 80);
          break;
        case 0x46:
          LAUNCH_TINYGEMM_KERNEL_NN(4, 96);
          break;
        default:
          TORCH_CHECK(false, "Unexpected block size, ", mb_size, "x", "nb_size");
      }
    }
  }
}

template <typename scalar_t, typename index_t>
void decode_attention_kernel_impl(
    scalar_t* __restrict__ output,
    float* __restrict__ attn_logits,
    const scalar_t* __restrict__ query,
627
628
629
630
631
    scalar_t* __restrict__ k_buffer,
    scalar_t* __restrict__ v_buffer,
    const scalar_t* __restrict__ key,
    const scalar_t* __restrict__ value,
    const int64_t* __restrict__ loc,
632
633
634
635
636
637
638
639
640
641
642
643
    const index_t* __restrict__ req_to_token,
    const int64_t* __restrict__ req_pool_indices,
    const int64_t* __restrict__ seq_lens,
    int64_t batches,
    int64_t num_heads,
    int64_t head_size,
    int64_t head_size_v,
    int64_t num_kv_splits,
    int64_t k_strideN,
    int64_t k_strideH,
    int64_t v_strideN,
    int64_t v_strideH,
644
645
646
647
    int64_t nk_strideN,
    int64_t nk_strideH,
    int64_t nv_strideN,
    int64_t nv_strideH,
648
649
650
651
652
    float scaling,
    float logit_cap,
    int64_t max_num_reqs,
    int64_t max_context_len,
    int64_t max_total_num_tokens) {
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
  at::parallel_for(0, batches * num_heads, 0, [&](int64_t begin, int64_t end) {
    int64_t bs{0}, head_id{0};
    data_index_init(begin, bs, batches, head_id, num_heads);

    for (int64_t i = begin; i < end; i++) {
      int64_t loc_val = loc[bs];
      scalar_t* k_buffer_ptr = k_buffer + loc_val * k_strideN + head_id * k_strideH;
      scalar_t* v_buffer_ptr = v_buffer + loc_val * v_strideN + head_id * v_strideH;
      const scalar_t* new_key_ptr = key + bs * nk_strideN + head_id * nk_strideH;
      const scalar_t* new_value_ptr = value + bs * nv_strideN + head_id * nv_strideH;
      copy_stub<scalar_t>(k_buffer_ptr, new_key_ptr, head_size);
      copy_stub<scalar_t>(v_buffer_ptr, new_value_ptr, head_size_v);

      // move to the next index
      data_index_step(bs, batches, head_id, num_heads);
    }
  });

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
  using Vec = at::vec::Vectorized<float>;

  // block length for k_buffer and v_buffer
  constexpr int64_t BLOCK_N = 256;

  // strides
  const int64_t q_strideM = num_heads * head_size;
  const int64_t q_strideH = head_size;
  const int64_t l_stride1 = num_kv_splits * (head_size_v + 1);
  const int64_t l_stride2 = head_size_v + 1;

  const bool has_logit_cap = logit_cap > 0;
  float rlogit_cap = has_logit_cap ? 1 / logit_cap : 0.f;

  // parallel on [batches, num_heads, num_kv_splits]
  at::parallel_for(0, batches * num_heads * num_kv_splits, 0, [&](int64_t begin, int64_t end) {
    int64_t bs{0}, head_id{0}, kv_id{0};
    data_index_init(begin, bs, batches, head_id, num_heads, kv_id, num_kv_splits);

    // s_prime and s_delta
    alignas(64) float s_i[BLOCK_N];
    float* __restrict__ s_delta = s_i;

    for (int64_t i = begin; i < end; ++i) {
      // get query
      const scalar_t* __restrict__ q_ptr = query + bs * q_strideM + head_id * q_strideH;

      // get key/value
      int64_t seq_len_kv = seq_lens[bs];
      int64_t req_pool_id = req_pool_indices[bs];
      TORCH_CHECK(seq_len_kv <= max_context_len, "seq_len_kv out of scope!");
      TORCH_CHECK(req_pool_id < max_num_reqs, "req_pool_id out of scope!");

      const int64_t SPLIT_SIZE = div_up(seq_len_kv, num_kv_splits);
      const int64_t kv_start = kv_id * SPLIT_SIZE;
      const int64_t kv_end = std::min(kv_start + SPLIT_SIZE, seq_len_kv);

      float m_prime = -std::numeric_limits<float>::infinity();
      float s_prime = 0.f;

      // get v_prime, and init to zero
      float* __restrict__ v_prime = attn_logits + i * (head_size_v + 1);
      fill_stub(v_prime, 0.f, head_size_v);

      // loop over K and V sequence with BLOCK_N
      for (int64_t n = kv_start; n < kv_end; n += BLOCK_N) {
        int64_t n_size = std::min(BLOCK_N, kv_end - n);

        // calculate s_i <- scale * Q @ K
        index_gemm_kernel_nt<scalar_t, index_t>(
            /* A   */ q_ptr,
            /* B   */ k_buffer + head_id * k_strideH,
            /* C   */ s_i,
            /* ind */ req_to_token + req_pool_id * max_context_len + n,
            /* scl */ scaling,
            /* M   */ 1,
            /* N   */ n_size,
            /* K   */ head_size,
            /* lda */ 1,
            /* ldb */ k_strideN,
            /* ldc */ 1,
            /* mtt */ max_total_num_tokens);

        // TODO: `tanh` from torch uses sleef u10, going to be slow
        if (has_logit_cap) {
          at::vec::map<float>(
              [logit_cap, rlogit_cap](Vec x) { return Vec(logit_cap) * (x * Vec(rlogit_cap)).tanh(); },
              s_i,
              s_i,
              n_size);
        }

        // m_i: max value per row
        float m_i = at::vec::reduce_all<float>([](Vec& x, Vec& y) { return at::vec::maximum(x, y); }, s_i, n_size);
        m_i = std::max(m_i, m_prime);

        // m_delta <- exp(m' - m_i)
        float m_delta = std::exp(m_prime - m_i);

        // s_delta <- exp(s_i - m_i)
        at::vec::map<float>([m_i](Vec x) { return (x - Vec(m_i)).exp_u20(); }, s_delta, s_i, n_size);

        // s' <- s' * m_delta + sum(s_delta)
        s_prime *= m_delta;
        s_prime += at::vec::reduce_all<float>([](Vec& x, Vec& y) { return x + y; }, s_delta, n_size);

        m_prime = m_i;

759
        // calculate V' <- s_delta @ V + V' * m_delta
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
        index_gemm_kernel_nn<scalar_t, index_t>(
            /* A   */ s_delta,
            /* B   */ v_buffer + head_id * v_strideH,
            /* C   */ v_prime,
            /* ind */ req_to_token + req_pool_id * max_context_len + n,
            /* scl */ &m_delta,
            /* M   */ 1,
            /* N   */ head_size_v,
            /* K   */ n_size,
            /* lda */ 1,
            /* ldb */ v_strideN,
            /* ldc */ 1,
            /* mtt */ max_total_num_tokens);
      }  // loop with KV blocks

      // only update v' when kv_split_size > 0
      if (kv_end > kv_start) {
        float s = 1 / s_prime;
        at::vec::map<float>([s](Vec out) { return out * Vec(s); }, v_prime, v_prime, head_size_v);

        v_prime[head_size_v] = m_prime + std::log(s_prime);
      }

      // move to the next index
      data_index_step(bs, batches, head_id, num_heads, kv_id, num_kv_splits);
    }
  });

  // parallel on [batches, num_heads]
  at::parallel_for(0, batches * num_heads, 0, [&](int64_t begin, int64_t end) {
    // NB: here we use logits[b][h][0] as acc, since
    // for the first kv split (kv_id == 0):
    //   m_delta = std::exp(-inf) = 0
    //   e_logic = std::exp(0) = 1
    //   acc = acc * m_delta + tv * e_logic = tv
    for (int64_t i = begin; i < end; ++i) {
      float* __restrict__ acc = attn_logits + i * l_stride1;

      float s_prime = 0.f;
      float m_prime = -std::numeric_limits<scalar_t>::infinity();

      // update acc with from each kv_split
      for (int64_t kv_id = 0; kv_id < num_kv_splits; ++kv_id) {
        float* __restrict__ tv = acc + kv_id * l_stride2;
        const float tlogic = (acc + kv_id * l_stride2)[head_size_v];

        float m_i = std::max(tlogic, m_prime);
        float m_delta = std::exp(m_prime - m_i);
        float e_logic = std::exp(tlogic - m_i);
        if (kv_id != 0) {
          at::vec::map2<float>(
              [m_delta, e_logic](Vec x, Vec y) { return x * Vec(m_delta) + y * Vec(e_logic); },
              acc,
              acc,
              tv,
              head_size_v);
        }

        s_prime = s_prime * m_delta + e_logic;
        m_prime = m_i;
      }

      copy_stub<scalar_t>(output + i * head_size_v, acc, 1 / s_prime, head_size_v);
    }
  });
}

template <typename scalar_t, typename index_t>
void decode_attention_grouped_kernel_impl(
    scalar_t* __restrict__ output,
    float* __restrict__ attn_logits,
    const scalar_t* __restrict__ query,
832
833
834
835
836
    scalar_t* __restrict__ k_buffer,
    scalar_t* __restrict__ v_buffer,
    const scalar_t* __restrict__ key,
    const scalar_t* __restrict__ value,
    const int64_t* __restrict__ loc,
837
838
839
840
841
842
843
844
845
846
847
848
849
    const index_t* __restrict__ req_to_token,
    const int64_t* __restrict__ req_pool_indices,
    const int64_t* __restrict__ seq_lens,
    int64_t batches,
    int64_t num_heads,
    int64_t num_heads_kv,
    int64_t head_size,
    int64_t head_size_v,
    int64_t num_kv_splits,
    int64_t k_strideN,
    int64_t k_strideH,
    int64_t v_strideN,
    int64_t v_strideH,
850
851
852
853
    int64_t nk_strideN,
    int64_t nk_strideH,
    int64_t nv_strideN,
    int64_t nv_strideH,
854
855
856
857
858
    float scaling,
    float logit_cap,
    int64_t max_num_reqs,
    int64_t max_context_len,
    int64_t max_total_num_tokens) {
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
  at::parallel_for(0, batches * num_heads_kv, 0, [&](int64_t begin, int64_t end) {
    int64_t bs{0}, head_kv_id{0};
    data_index_init(begin, bs, batches, head_kv_id, num_heads_kv);

    for (int64_t i = begin; i < end; i++) {
      int64_t loc_val = loc[bs];
      scalar_t* k_buffer_ptr = k_buffer + loc_val * k_strideN + head_kv_id * k_strideH;
      scalar_t* v_buffer_ptr = v_buffer + loc_val * v_strideN + head_kv_id * v_strideH;
      const scalar_t* new_key_ptr = key + bs * nk_strideN + head_kv_id * nk_strideH;
      const scalar_t* new_value_ptr = value + bs * nv_strideN + head_kv_id * nv_strideH;
      copy_stub<scalar_t>(k_buffer_ptr, new_key_ptr, head_size);
      copy_stub<scalar_t>(v_buffer_ptr, new_value_ptr, head_size_v);

      // move to the next index
      data_index_step(bs, batches, head_kv_id, num_heads_kv);
    }
  });

877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
  using Vec = at::vec::Vectorized<float>;

  // block length for k_buffer and v_buffer
  constexpr int64_t BLOCK_N = 256;
  // block length for heads
  // we parallel on [batches, divup(num_heads, BLOCK_H), num_kv_splits]
  // use smaller BLOCK_H when batches is small to utilize all cores
  constexpr int64_t kBLOCK_H = 16;
  const int64_t BLOCK_H = std::min(4 * batches, kBLOCK_H);

  // strides
  const int64_t q_strideM = num_heads * head_size;
  const int64_t q_strideH = head_size;
  const int64_t l_stride0 = num_heads * num_kv_splits * (head_size_v + 1);
  const int64_t l_stride1 = num_kv_splits * (head_size_v + 1);
  const int64_t l_stride2 = head_size_v + 1;

  const bool has_logit_cap = logit_cap > 0;
  float rlogit_cap = has_logit_cap ? 1 / logit_cap : 0.f;

  // partition the heads into blocks for parallel
  const int64_t num_groups = num_heads / num_heads_kv;
899
  const int64_t num_blocks = div_up(num_groups, BLOCK_H);
900

901
902
903
904
  // parallel on [batches, num_heads_kv, num_blocks, num_kv_splits]
  at::parallel_for(0, batches * num_heads_kv * num_blocks * num_kv_splits, 0, [&](int64_t begin, int64_t end) {
    int64_t bs{0}, head_kv_id{0}, block_id{0}, kv_id{0};
    data_index_init(begin, bs, batches, head_kv_id, num_heads_kv, block_id, num_blocks, kv_id, num_kv_splits);
905
906
907
908
909
910
911
912
913

    alignas(64) float s_i[BLOCK_H * BLOCK_N];
    float* __restrict__ s_delta = s_i;

    alignas(64) float s_prime[BLOCK_H];
    alignas(64) float m_prime[BLOCK_H];
    alignas(64) float m_delta[BLOCK_H];

    for (int64_t i = begin; i < end; ++i) {
914
915
      const int64_t h_start = head_kv_id * num_groups + block_id * BLOCK_H;
      const int64_t h_end = head_kv_id * num_groups + std::min(block_id * BLOCK_H + BLOCK_H, num_groups);
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
      const int64_t h_size = h_end - h_start;

      // get query
      const scalar_t* __restrict__ q_ptr = query + bs * q_strideM + h_start * q_strideH;

      int64_t seq_len_kv = seq_lens[bs];
      int64_t req_pool_id = req_pool_indices[bs];
      TORCH_CHECK(seq_len_kv <= max_context_len, "seq_len_kv out of scope!");
      TORCH_CHECK(req_pool_id < max_num_reqs, "req_pool_id out of scope!");

      const int64_t SPLIT_SIZE = div_up(seq_len_kv, num_kv_splits);
      const int64_t kv_start = kv_id * SPLIT_SIZE;
      const int64_t kv_end = std::min(kv_start + SPLIT_SIZE, seq_len_kv);

      fill_stub(s_prime, 0.f, BLOCK_H);
      fill_stub(m_prime, -std::numeric_limits<float>::infinity(), BLOCK_H);

      // get v_prime, and init to zero
      float* __restrict__ v_prime = attn_logits + bs * l_stride0 + h_start * l_stride1 + kv_id * l_stride2;
      for (int64_t h = 0; h < h_size; ++h) {
        fill_stub(v_prime + h * l_stride1, 0.f, head_size_v);
      }

      // loop over K and V sequence with BLOCK_N
      for (int64_t n = kv_start; n < kv_end; n += BLOCK_N) {
        int64_t n_size = std::min(BLOCK_N, kv_end - n);

        // calculate Q @ K
        index_gemm_kernel_nt<scalar_t, index_t>(
            /* A   */ q_ptr,
            /* B   */ k_buffer + head_kv_id * k_strideH,
            /* C   */ s_i,
            /* ind */ req_to_token + req_pool_id * max_context_len + n,
            /* scl */ scaling,
            /* M   */ h_size,
            /* N   */ n_size,
            /* K   */ head_size,
            /* lda */ q_strideH,
            /* ldb */ k_strideN,
            /* ldc */ BLOCK_N,
            /* mtt */ max_total_num_tokens);

        if (has_logit_cap) {
          at::vec::map<float>(
              [logit_cap, rlogit_cap](Vec x) { return Vec(logit_cap) * (x * Vec(rlogit_cap)).tanh(); },
              s_i,
              s_i,
              n_size);
        }

        // update the scaling coefficients
        for (int64_t h = 0; h < h_size; ++h) {
          // m_i: max value per row
          float m_i = at::vec::reduce_all<float>(
              [](Vec& x, Vec& y) { return at::vec::maximum(x, y); }, s_i + h * BLOCK_N, n_size);
          m_i = std::max(m_i, m_prime[h]);

          // m_delta <- exp(m' - m_i)
          m_delta[h] = std::exp(m_prime[h] - m_i);

          // s_delta <- exp(s_i - m_i)
          at::vec::map<float>(
              [m_i](Vec x) { return (x - Vec(m_i)).exp_u20(); }, s_delta + h * BLOCK_N, s_i + h * BLOCK_N, n_size);

          // s' <- s' * m_delta + sum(s_delta)
          s_prime[h] *= m_delta[h];
          s_prime[h] += at::vec::reduce_all<float>([](Vec& x, Vec& y) { return x + y; }, s_delta + h * BLOCK_N, n_size);

          m_prime[h] = m_i;
        }

987
        // calculate V' <- s_delta @ V + V' * m_delta
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        index_gemm_kernel_nn<scalar_t, index_t>(
            /* A   */ s_delta,
            /* B   */ v_buffer + head_kv_id * v_strideH,
            /* C   */ v_prime,
            /* ind */ req_to_token + req_pool_id * max_context_len + n,
            /* scl */ m_delta,
            /* M   */ h_size,
            /* N   */ head_size_v,
            /* K   */ n_size,
            /* lda */ BLOCK_N,
            /* ldb */ v_strideN,
            /* ldc */ l_stride1,
            /* mtt */ max_total_num_tokens);
      }  // loop with KV blocks

      // only update v' when kv_split_size > 0
      if (kv_end > kv_start) {
        for (int64_t h = 0; h < h_size; ++h) {
          float s = 1 / s_prime[h];
          at::vec::map<float>(
              [s](Vec out) { return out * Vec(s); }, v_prime + h * l_stride1, v_prime + h * l_stride1, head_size_v);
          (v_prime + h * l_stride1)[head_size_v] = m_prime[h] + std::log(s_prime[h]);
        }
      }

      // move to the next index
1014
      data_index_step(bs, batches, head_kv_id, num_heads_kv, block_id, num_blocks, kv_id, num_kv_splits);
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
    }
  });

  // parallel on [batches, num_heads]
  at::parallel_for(0, batches * num_heads, 0, [&](int64_t begin, int64_t end) {
    // NB: same as above
    for (int64_t i = begin; i < end; ++i) {
      float* __restrict__ acc = attn_logits + i * l_stride1;

      float s_prime = 0.f;
      float m_prime = -std::numeric_limits<scalar_t>::infinity();

      // update acc with from each kv_split
      for (int64_t kv_id = 0; kv_id < num_kv_splits; ++kv_id) {
        float* __restrict__ tv = acc + kv_id * l_stride2;
        const float tlogic = (acc + kv_id * l_stride2)[head_size_v];

        float m_i = std::max(tlogic, m_prime);
        float m_delta = std::exp(m_prime - m_i);
        float e_logic = std::exp(tlogic - m_i);
        if (kv_id != 0) {
          at::vec::map2<float>(
              [m_delta, e_logic](Vec x, Vec y) { return x * Vec(m_delta) + y * Vec(e_logic); },
              acc,
              acc,
              tv,
              head_size_v);
        }

        s_prime = s_prime * m_delta + e_logic;
        m_prime = m_i;
      }

      copy_stub<scalar_t>(output + i * head_size_v, acc, 1 / s_prime, head_size_v);
    }
  });
}

}  // anonymous namespace

// query:            [num_tokens, num_heads, head_size]
// output:           [num_tokens, num_heads, head_size]
// k_buffer:         [max_total_num_tokens, num_heads, head_size]
// v_buffer:         [max_total_num_tokens, num_heads, head_size_v]
// attn_logits:      [num_seqs, num_heads, num_kv_splits, head_size_v + 1]
// req_to_token:     [max_num_reqs, max_context_len] int32 or int64
// req_pool_indices: [num_seqs] int64
// seq_lens:         [num_seqs] int64
//
void decode_attention_cpu(
    at::Tensor& query,
    at::Tensor& k_buffer,
    at::Tensor& v_buffer,
1068
1069
1070
1071
    at::Tensor& output,
    at::Tensor& key,
    at::Tensor& value,
    at::Tensor& loc,
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    at::Tensor& attn_logits,
    at::Tensor& req_to_token,
    at::Tensor& req_pool_indices,
    at::Tensor& seq_lens,
    double sm_scale,
    double logit_cap) {
  RECORD_FUNCTION(
      "sgl-kernel::decode_attention_cpu",
      std::vector<c10::IValue>(
          {query, output, k_buffer, v_buffer, attn_logits, req_to_token, req_pool_indices, seq_lens}));

  CHECK_INPUT(query);
  CHECK_LAST_DIM_CONTIGUOUS_INPUT(k_buffer);
  CHECK_LAST_DIM_CONTIGUOUS_INPUT(v_buffer);
1086
1087
1088
  // for MLA, key and value shares the same storage and value could be non-contiguous
  CHECK_LAST_DIM_CONTIGUOUS_INPUT(key);
  CHECK_LAST_DIM_CONTIGUOUS_INPUT(value);
1089
1090
1091
  CHECK_DIM(3, query);
  CHECK_DIM(3, k_buffer);
  CHECK_DIM(3, v_buffer);
1092
1093
1094
  CHECK_DIM(3, key);
  CHECK_DIM(3, value);
  CHECK_DIM(1, loc);
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

  int64_t num_seqs = seq_lens.size(0);
  int64_t max_num_reqs = req_to_token.size(0);
  int64_t max_context_len = req_to_token.size(1);
  int64_t max_total_num_tokens = k_buffer.size(0);

  int64_t num_heads = query.size(1);
  int64_t num_heads_kv = k_buffer.size(1);
  int64_t head_size = query.size(2);
  int64_t head_size_v = v_buffer.size(2);

  int64_t num_kv_splits = attn_logits.size(2);

1108
  CHECK_EQ(loc.numel(), num_seqs);
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
  CHECK_EQ(attn_logits.size(0), num_seqs);
  CHECK_EQ(attn_logits.size(1), num_heads);
  CHECK_EQ(attn_logits.size(3), head_size_v + 1);
  CHECK_EQ(attn_logits.scalar_type(), at::kFloat);

  // strides for k_buffer and v_buffer
  int64_t k_strideN = k_buffer.stride(0);
  int64_t k_strideH = k_buffer.stride(1);
  int64_t v_strideN = v_buffer.stride(0);
  int64_t v_strideH = v_buffer.stride(1);
1119
1120
1121
1122
1123
  // strides for new key and value
  int64_t nk_strideN = key.stride(0);
  int64_t nk_strideH = key.stride(1);
  int64_t nv_strideN = value.stride(0);
  int64_t nv_strideH = value.stride(1);
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146

  // check index data types
  const auto index_dtype = req_to_token.scalar_type();
  TORCH_CHECK(
      index_dtype == at::kInt || index_dtype == at::kLong,
      "decode: expect req_to_token to be int32 or int64, got ",
      index_dtype);
  TORCH_CHECK(seq_lens.scalar_type() == at::kLong, "decode: expect req_lens to be int64, got ", seq_lens.scalar_type());
  TORCH_CHECK(
      req_pool_indices.scalar_type() == at::kLong,
      "decode: expect req_pool_indices to be int64, got ",
      req_pool_indices.scalar_type());

  AT_DISPATCH_REDUCED_FLOATING_TYPES(query.scalar_type(), "decode_attention_kernel", [&] {
    AT_DISPATCH_INDEX_TYPES(index_dtype, "decode_attention_indices", [&] {
      if (num_heads == num_heads_kv) {
        // MHA
        decode_attention_kernel_impl<scalar_t, index_t>(
            output.data_ptr<scalar_t>(),
            attn_logits.data_ptr<float>(),
            query.data_ptr<scalar_t>(),
            k_buffer.data_ptr<scalar_t>(),
            v_buffer.data_ptr<scalar_t>(),
1147
1148
1149
            key.data_ptr<scalar_t>(),
            value.data_ptr<scalar_t>(),
            loc.data_ptr<int64_t>(),
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
            req_to_token.data_ptr<index_t>(),
            req_pool_indices.data_ptr<int64_t>(),
            seq_lens.data_ptr<int64_t>(),
            num_seqs,
            num_heads,
            head_size,
            head_size_v,
            num_kv_splits,
            k_strideN,
            k_strideH,
            v_strideN,
            v_strideH,
1162
1163
1164
1165
            nk_strideN,
            nv_strideH,
            nv_strideN,
            nv_strideH,
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
            sm_scale,
            logit_cap,
            max_num_reqs,
            max_context_len,
            max_total_num_tokens);
      } else {
        // GQA/MQA/MLA
        decode_attention_grouped_kernel_impl<scalar_t, index_t>(
            output.data_ptr<scalar_t>(),
            attn_logits.data_ptr<float>(),
            query.data_ptr<scalar_t>(),
            k_buffer.data_ptr<scalar_t>(),
            v_buffer.data_ptr<scalar_t>(),
1179
1180
1181
            key.data_ptr<scalar_t>(),
            value.data_ptr<scalar_t>(),
            loc.data_ptr<int64_t>(),
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
            req_to_token.data_ptr<index_t>(),
            req_pool_indices.data_ptr<int64_t>(),
            seq_lens.data_ptr<int64_t>(),
            num_seqs,
            num_heads,
            num_heads_kv,
            head_size,
            head_size_v,
            num_kv_splits,
            k_strideN,
            k_strideH,
            v_strideN,
            v_strideH,
1195
1196
1197
1198
            nk_strideN,
            nk_strideH,
            nv_strideN,
            nv_strideH,
1199
1200
1201
1202
1203
1204
1205
1206
1207
            sm_scale,
            logit_cap,
            max_num_reqs,
            max_context_len,
            max_total_num_tokens);
      }
    });
  });
}