README.md 30 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# SGLang Model Gateway

High-performance model routing control and data plane for large-scale LLM deployments. The gateway orchestrates fleets of workers, balances traffic across HTTP and gRPC backends, and exposes OpenAI-compatible APIs with pluggable history storage and tool integrations—while remaining deeply optimized for the SGLang serving runtime.

## Overview
- Unified control plane for registering, monitoring, and orchestrating prefill, decode, and regular workers across heterogeneous model fleets.
- Data plane that routes requests across HTTP, PD (prefill/decode), gRPC, and OpenAI-compatible backends with shared reliability features.
- Industry-first gRPC pipeline with native Rust tokenization, reasoning, and tool-call execution for high-throughput OpenAI-compatible serving.
- Multi-model inference gateway mode (`--enable-igw`) that runs several routers at once and applies per-model policies.
- Conversation, response, and chat-history connectors that centralize state at the router, enabling compliant sharing across models/MCP loops with in-memory, no-op, or Oracle ATP storage options.
- Built-in reliability primitives: retries with exponential backoff, circuit breakers, token-bucket rate limiting, and queuing.
- First-class observability with structured logging and Prometheus metrics.

### Architecture at a Glance
**Control Plane**
- Worker Manager validates workers, discovers capabilities, and keeps the registry in sync.
- Job Queue serializes background operations (add/remove) and exposes status via `/workers/{url}`.
- Background health checker and load monitor keep circuit breakers and policies informed.
- Optional Kubernetes service discovery keeps the registry aligned with pods.

**Data Plane**
- SGLang HTTP routers for regular and PD (prefill/decode) traffic with policy-aware selection.
- SGLang gRPC router and pipeline that stream tokenized requests through SRT gRPC workers with fully Rust tokenizer, reasoning parser, and tool parser implementations for maximal OpenAI API performance, supporting both single-stage and PD serving topologies.
- OpenAI router that proxies OpenAI-style requests, responses, and conversations to remote vendors (OpenAI, xAI, Gemini, and other OpenAI-compatible providers) while preserving streaming/SSE semantics.
- Router Manager coordinates multiple router implementations when IGW is enabled.
- Resilience layer delivers token-bucket rate limiting, request queuing, retry executor, and per-worker circuit breakers to keep traffic flowing through failures.
- Advanced load balancing with cache-aware request reuse, load-aware (power-of-two) selection, and per-model policy overrides.

## Feature Highlights
- Multiple load balancing strategies (`random`, `round_robin`, `cache_aware`, `power_of_two`) with DP-aware scheduling.
- Multi-model HTTP serving and inference gateway routing with model-specific policies.
- Prefill/decode disaggregation, including bootstrap port handling and cache-aware merging.
- gRPC routing with fully Rust tokenizer loading, reasoning parser selection, and tool parser integration for OpenAI-compatible endpoints—supporting streaming and non-streaming modes across DeepSeek, Llama, Kimi K2, Qwen, GPT-OSS, Mistral, Step-3, GLM4, and other reasoning-capable models.
- OpenAI-compatible `/v1/chat/completions`, `/v1/responses`, `/v1/conversations`, `/v1/embeddings`, and `/v1/rerank` endpoints.
- Native MCP client integration supporting all MCP transport protocols (STDIO, HTTP, SSE, and Streamable) for tool execution loops.
- Pluggable history connectors: in-memory, disabled, or Oracle ATP (with pooling and credential support).
- Reliability controls: retry with jitter, worker-scoped circuit breakers, token bucket limiter with optional queue, and cache flush APIs.
- Service discovery for regular and PD workloads with independent selectors.
- Prometheus metrics and structured tracing for every stage of routing.
40

Simo Lin's avatar
Simo Lin committed
41
## Documentation
42
- **User Guide**: [docs.sglang.ai/advanced_features/router.html](https://docs.sglang.ai/advanced_features/router.html)
43
- Additional guides, API references, and deployment patterns are continuously updated alongside SGLang releases.
44

45
## Installation
46
### Prerequisites
47
48
49
50
- **Rust and Cargo**
  ```bash
  # Install rustup (Rust installer and version manager)
  curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
51

52
53
  # Reload shell environment
  source "$HOME/.cargo/env"
54

55
56
57
58
59
  # Verify installation
  rustc --version
  cargo --version
  ```
- **Python** with `pip` and virtualenv tooling available.
60

61
62
63
64
### Rust Binary
```bash
# Build release binary
cargo build --release
65
66
```

67
### Python Package
68
```bash
69
pip install maturin
70

71
# Fast development mode (debug build, no wheel, instant)
72
# Uses system OpenSSL (requires libssl-dev/openssl-devel)
73
74
75
maturin develop

# Production build (optimized, creates wheel)
76
77
78
79
80
81
82
# Uses vendored OpenSSL (cross-platform compatibility)
maturin build --release --features vendored-openssl
pip install --force-reinstall dist/*.whl

# Development build with system OpenSSL (faster)
# Requires: apt install libssl-dev pkg-config (Ubuntu/Debian)
#       or: yum install openssl-devel (RHEL/CentOS)
83
84
maturin build --release
pip install --force-reinstall dist/*.whl
85
```
86
> **Note:** Use `maturin develop` for fast iteration during development (builds in debug mode and installs directly). Use `maturin build --release --features vendored-openssl` for production wheels with full optimizations (opt-level="z", lto="fat") and cross-platform compatibility. The package uses abi3 support for Python 3.8+ compatibility.
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
## Quick Start
### Regular HTTP Routing
- **Rust binary**
  ```bash
  ./target/release/sglang-router \
    --worker-urls http://worker1:8000 http://worker2:8000 \
    --policy cache_aware
  ```
  `cargo run --release -- …` provides the same behavior during development.
- **Python launcher**
  ```bash
  python3 -m sglang_router.launch_router \
    --worker-urls http://worker1:8000 http://worker2:8000 \
    --policy cache_aware
  ```

### Prefill/Decode Disaggregation (PD)
- **Rust binary**
  ```bash
  ./target/release/sglang-router \
    --pd-disaggregation \
    --prefill http://prefill1:30001 9001 \
    --prefill http://prefill2:30002 \
    --decode http://decode1:30011 \
    --decode http://decode2:30012 \
    --policy cache_aware \
    --prefill-policy cache_aware \
    --decode-policy power_of_two
  ```
- **Python launcher**
  ```bash
  python3 -m sglang_router.launch_router \
    --pd-disaggregation \
    --prefill http://prefill1:30001 9001 \
    --prefill http://prefill2:30002 \
    --decode http://decode1:30011 \
    --decode http://decode2:30012 \
    --policy cache_aware
  ```
Prefill entries accept an optional bootstrap port. PD mode merges prefill metadata with decode outputs and streams results back to the client.

### Multi-Model Inference Gateway
Enable IGW mode to route multiple models through a single router while applying per-model policies:
131
132
```bash
./target/release/sglang-router \
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
  --enable-igw \
  --policy cache_aware \
  --max-concurrent-requests 512

# Register workers dynamically
curl -X POST http://localhost:30000/workers \
  -H "Content-Type: application/json" \
  -d '{
        "url": "http://worker-a:8000",
        "model_id": "mistral",
        "priority": 10,
        "labels": {"tier": "gold"}
      }'

# Add another worker with a different model/policy hint
curl -X POST http://localhost:30000/workers \
  -H "Content-Type: application/json" \
  -d '{
        "url": "http://worker-b:8000",
        "model_id": "llama3",
        "priority": 20,
        "labels": {"policy": "power_of_two", "tier": "silver"}
      }'

# Inspect registered workers
158
curl http://localhost:30000/workers
159
```
160
161
162
163
164
165
166
167
168
169
170
171
172
173
Sample response (http workers):
```json
{
  "workers": [
    {"id":"http://0.0.0.0:31378","url":"http://0.0.0.0:31378","model_id":"mistral","priority":50,"cost":1.0,"worker_type":"regular","is_healthy":true,"load":0,"connection_mode":"Http"},
    {"id":"http://0.0.0.0:34881","url":"http://0.0.0.0:34881","model_id":"llama3","priority":50,"cost":1.0,"worker_type":"regular","is_healthy":true,"load":0,"connection_mode":"Http"}
  ],
  "total": 2,
  "stats": {
    "prefill_count": 0,
    "decode_count": 0,
    "regular_count": 2
  }
}
174
```
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
Add more workers with the same API; include optional `labels` (for per-model policies) or `tokenizer_path` / `reasoning_parser` / `tool_parser` fields as needed. `/workers/{url}` exposes queued job status while background jobs finalize registration.

### gRPC Routing
- **Rust binary**
  ```bash
  ./target/release/sglang-router \
    --worker-urls grpc://worker-grpc-0:31001 grpc://worker-grpc-1:31002 \
    --tokenizer-path /path/to/tokenizer.json \
    --reasoning-parser deepseek-r1 \
    --tool-call-parser json
  ```
- **Python router**
  ```bash
  python3 -m sglang_router.launch_router \
    --worker-urls grpc://127.0.0.1:20000 \
    --model-path meta-llama/Llama-3.1-8B-Instruct \
    --host 0.0.0.0 \
    --port 8080
  ```
The gRPC router tokenizes inputs locally, supports tool-call parsing, and streams responses. It supports both regular HTTP-equivalent serving and PD (prefill/decode) serving when the worker registry contains PD workers. Provide `--model-path` or `--tokenizer-path` (HuggingFace ID or local directory) whenever connection mode resolves to gRPC.
Use `--reasoning-parser` to select built-in reasoning pipelines (DeepSeek-R1, Qwen3, Step-3, GLM4, etc.) and `--tool-call-parser` for JSON/Pythonic/XML tool contracts in streaming or non-streaming modes.
196

197
### OpenAI Backend Mode
198
199
200
201
Route requests to OpenAI or OpenAI-compatible endpoints:

```bash
# Route to OpenAI API
202
203
204
205
206
207
208
209
python3 -m sglang_router.launch_router \
  --backend openai \
  --worker-urls https://api.openai.com \

# Route to custom OpenAI-compatible endpoint (Gemini, xAI, etc.)
python3 -m sglang_router.launch_router \
  --backend openai \
  --worker-urls http://my-openai-compatible-service:8000 \
210
211
```

212
213
214
215
**Notes**
- OpenAI backend mode acts as a proxy to a single remote endpoint; load balancing is not applied.
- Provide exactly one `--worker-urls` entry per router instance.
- The Rust binary supports the same flags (`./target/release/sglang-router --backend openai ...`).
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
### MCP Integration
The SGL Model Gateway provides native Model Context Protocol (MCP) client integration, enabling tool calling across STDIO, SSE, and Streamable transports. MCP servers are configured via a YAML configuration file and registered at startup through the workflow engine.

#### Basic Usage
```bash
# Rust binary
./target/release/sglang-router \
  --mcp-config-path /path/to/mcp-config.yaml \
  --worker-urls http://worker1:8000

# Python launcher
python3 -m sglang_router.launch_router \
  --mcp-config-path /path/to/mcp-config.yaml \
  --worker-urls http://worker1:8000
```

#### MCP Configuration File
Create an MCP configuration file to define servers, transports, and connection settings:

```yaml
servers:
  - name: "filesystem"
    command: "npx"
    args: ["-y", "@modelcontextprotocol/server-filesystem", "/tmp"]
    required: false

  - name: "github"
    url: "https://api.github.com/mcp"
    token: "ghp_xxxxx"
    transport: "sse"
    required: false

  - name: "custom-tools"
    url: "https://tools.example.com/mcp"
    transport: "streamable"
    required: true

pool:
  max_connections: 100
  idle_timeout: 300  # seconds

proxy:
  http: "http://proxy.internal:8080"
  https: "https://proxy.internal:8443"
  no_proxy: "localhost,127.0.0.1,*.internal"

inventory:
  enable_refresh: true
  tool_ttl: 300  # seconds - how long tools are considered fresh
  refresh_interval: 300  # seconds - background refresh interval
```

#### Configuration Options

**Server Configuration** (`servers` array):
- `name`: Unique identifier for the MCP server
- `command` + `args`: For STDIO transport (local process execution)
- `url`: For SSE or Streamable transports (HTTP/HTTPS endpoints)
- `token`: Optional authentication token for HTTP-based transports
- `transport`: Protocol type (`"sse"` or `"streamable"`; STDIO is inferred from `command`)
- `required`: If `true`, router fails to start if server is unreachable (default: `false`)
- `envs`: Environment variables for STDIO processes (optional)
- `proxy`: Per-server proxy override (set to `null` to bypass global proxy)

**Connection Pool** (`pool`):
- `max_connections`: Maximum pooled connections for dynamic servers (default: 100)
- `idle_timeout`: Idle connection timeout in seconds before cleanup (default: 300)

**Proxy Configuration** (`proxy`):
- `http`/`https`: Proxy URLs for MCP server connections (not LLM traffic)
- `no_proxy`: Comma-separated hosts to exclude from proxying (supports wildcards)
- **Note**: Proxy settings are currently ignored for `streamable` transport. Use STDIO or SSE transports if proxy support is required.

**Inventory Settings** (`inventory`):
- `enable_refresh`: Enable automatic background refresh of tool inventory (default: true)
- `tool_ttl`: Tool cache TTL in seconds - how long tools are considered fresh (default: 300)
- `refresh_interval`: Background refresh interval in seconds - proactive inventory refresh (default: 300)

#### Transport Types

**STDIO** (Local Process):
```yaml
name: "local-tools"
command: "python"
args: ["-m", "my_mcp_server"]
envs:
  API_KEY: "secret"
  DEBUG: "true"
```

**SSE** (Server-Sent Events):
```yaml
name: "remote-sse"
url: "https://mcp.example.com/events"
token: "bearer-token"
transport: "sse"
```

**Streamable** (Bidirectional Streaming):
```yaml
name: "streaming-tools"
url: "https://mcp.example.com/stream"
transport: "streamable"
required: true
```

#### Server Lifecycle
- MCP servers are registered via the workflow engine with retry logic (100 attempts, 2-hour timeout for STDIO servers)
- Discovery phase identifies tools, prompts, and resources
- Tool inventory is cached with configurable TTL and periodic refresh
- Failed optional servers log warnings; required servers halt startup
- Static servers (from config) are permanent; dynamic servers (per-request) use connection pooling

Check Prometheus metrics for MCP activity (`mcp_*` metrics) and workflow job status via the admin API.

332
333
### Python Launcher (Router + Workers)
Launch router and SGLang worker processes together; `launch_server` spins up workers (HTTP or gRPC) and the router in one shot.
334
```bash
335
python3 -m sglang_router.launch_server --host 0.0.0.0
336
```
337
Add flags as needed for production deployments:
Simo Lin's avatar
Simo Lin committed
338
```bash
339
340
341
python3 -m sglang_router.launch_server \
  --host 0.0.0.0 \
  --port 8080 \
342
  --model meta-llama/Llama-3.1-8B-Instruct \
343
344
345
  --tp-size 1 \
  --dp-size 8 \
  --grpc-mode
346
```
347
Omit `--grpc-mode` to start HTTP workers; the router automatically configures worker URLs and schedules them based on the provided DP size.
348

349
### Mini Load Balancer (Debug)
350
```bash
351
352
353
354
355
python3 -m sglang_router.launch_router \
  --mini-lb \
  --pd-disaggregation \
  --prefill http://localhost:30001 \
  --decode http://localhost:30011
356
```
357
358
359
360
361
362
363
MiniLB forwards PD requests using simple random routing and is intended for local debugging only.

### Running Worker Servers
Use upstream SGLang binaries to start dedicated worker processes.
- **Prefill worker server (gRPC mode)**:
  ```bash
  python3 -m sglang.launch_server \
364
    --model meta-llama/Llama-3.1-8B-Instruct \
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    --port 20000 \
    --tp-size 1 \
    --grpc-mode
  ```
  Remove `--grpc-mode` for HTTP workers. Combine with the router commands above to register the worker via CLI flags or the control-plane API.

## Control Plane

### Worker Lifecycle & Job Queue
- `JobQueue` handles asynchronous add/remove operations to avoid blocking clients.
- `WorkerManager` inspects worker metadata (`/get_server_info`, `/get_model_info`), tracks load, and exposes `flush_cache` and `get_loads`.
- Per-worker circuit breakers and health probes keep the registry healthy; load monitor feeds metrics to cache-aware and power-of-two policies.

### Administrative & Worker APIs
| Method   | Path             | Description                                                                                                                                               |
|----------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| `POST`   | `/workers`       | Queue worker registration (prefill/decode/regular). Body matches `WorkerConfigRequest`. Returns `202 Accepted` while the job queue processes the request. |
| `GET`    | `/workers`       | List workers with health, load, policy metadata, and queued job status.                                                                                   |
| `GET`    | `/workers/{url}` | Inspect a specific worker or job queue entry.                                                                                                             |
| `DELETE` | `/workers/{url}` | Queue worker removal.                                                                                                                                     |
| `POST`   | `/add_worker`    | Legacy immediate worker registration using query params. Returns synchronously. **Deprecated soon**—use `POST /workers` instead.                          |
| `POST`   | `/remove_worker` | Legacy immediate removal. **Deprecated soon**—use `DELETE /workers/{url}` instead.                                                                        |
| `GET`    | `/list_workers`  | Legacy list of worker URLs. **Deprecated soon**—use `GET /workers` instead.                                                                               |
| `POST`   | `/flush_cache`   | Trigger cache flush across HTTP workers with success/failure breakdown.                                                                                   |
| `GET`    | `/get_loads`     | Sample current load reported by each worker.                                                                                                              |

All administrative routes inherit router API-key protection when `--api-key` is supplied. Job status includes `pending`, `processing`, and `failed` phases with timestamps.

### Service Discovery
Enable Kubernetes discovery to reconcile workers automatically:
395
```bash
396
397
398
399
400
./target/release/sglang-router \
  --service-discovery \
  --selector app=sglang-worker role=inference \
  --service-discovery-namespace sglang-system \
  --service-discovery-port 8000
401
```
402
PD mode accepts dedicated selectors:
403
```bash
404
405
406
407
--pd-disaggregation \
--prefill-selector app=sglang component=prefill \
--decode-selector app=sglang component=decode \
--service-discovery
408
```
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
Prefill pods can expose bootstrap ports via the `sglang.ai/bootstrap-port` annotation. RBAC must allow `get`, `list`, and `watch` on pods.

## Data Plane

### Router Capabilities (HTTP & gRPC)
Both router stacks:
- Share load-balancing policies (random, round-robin, cache-aware, power-of-two) with DP-aware scheduling, retries, circuit breakers, and rate limiting.
- Record metrics per request, track running load, and integrate with the router-wide policy registry.

The HTTP router exposes the full OpenAI-compatible surface area (`/generate`, `/v1/chat/completions`, `/v1/completions`, `/v1/embeddings`, `/v1/responses`, `/v1/rerank`, etc.). The gRPC router delivers blazing-fast `/generate` and `/v1/chat/completions` today, with the remaining endpoints returning `501 Not Implemented` until their pipelines are finalised.

#### HTTP Router specifics
- **Regular router** handles classic single-stage workers with per-model policy overrides.
- **Prefill/Decode router** coordinates disaggregated prefill and decode workers, merges metadata, and manages streaming fan-in.

#### gRPC Router specifics
- Industry-first fully Rust implementation of an OpenAI-compatible gRPC inference gateway, including tokenizer, reasoning parser, and tool parser execution in-process for maximum throughput.
- Supports both single-stage and PD (prefill/decode) worker topologies; the router automatically selects the appropriate pipeline per model.
- Provides the same `/v1/*` APIs as the HTTP router while streaming tokenized requests/responses directly to SRT gRPC workers.
- Built-in reasoning parsers for DeepSeek, Qwen, Llama, Mistral, GPT-OSS, Step-3, GLM4, Kimi K2, and other structured-thought models.
- Tool-call parsers for JSON, Pythonic, XML, and custom schemas with streaming and non-streaming execution loops.
- Tokenizer factory supporting HuggingFace models, local tokenizer.json files, and chat template overrides (see `src/tokenizer`).
- Explore the code paths in `src/reasoning_parser`, `src/tool_parser`, and `src/tokenizer` for the end-to-end Rust implementations that power gRPC mode.

### OpenAI Router
- Proxies OpenAI-compatible chat completions and responses APIs, preserving headers and SSE streams end-to-end.
- Supports `/v1/responses` background jobs with cancellation, deletion, and listing input items—enabling agentic, multi-turn orchestration without persisting data at remote vendor endpoints.
436
- Conversation APIs (`/v1/conversations` and `/v1/conversations/{id}/items`) interact with the configured conversation storage backend for compliant chat-history management. Conversation state lives at the router tier, so the same history can drive different models or MCP loops without leaking data to upstream vendors.
437
438
439
440
441
442
443
444
445
446
- Chat history, agentic multi-turn `/v1/responses`, and the native MCP client (STDIO/HTTP/SSE/Streamable transports) are designed to satisfy enterprise data-privacy requirements by keeping sensitive state within the router.

### Request Endpoints
| Endpoint                                                                         | Notes                                                      |
|----------------------------------------------------------------------------------|------------------------------------------------------------|
| `POST /generate`                                                                 | SGLang generate API.                                       |
| `POST /v1/chat/completions`                                                      | OpenAI-compatible chat. Supports streaming and tool calls. |
| `POST /v1/completions`                                                           | OpenAI-compatible text completions.                        |
| `POST /v1/responses`                                                             | Create background responses, returns response IDs.         |
| `GET /v1/responses/{id}`                                                         | Retrieve stored responses.                                 |
447
| Conversation endpoints (`/v1/conversations`, `/v1/conversations/{id}`, `/v1/conversations/{id}/items`) | Manage chat history.                                       |
448
449
450
451
452
453
454
455
456
457
458
459
| `POST /v1/embeddings`                                                            | Forward embedding requests.                                |
| `POST /v1/rerank`, `POST /rerank`                                                | Ranking APIs.                                              |

Public health endpoints (`/liveness`, `/readiness`, `/health`, `/health_generate`) reflect registry state; readiness ensures PD workers are paired and IGW has at least one healthy route.

## Conversations, Responses, and Data Connectors
- `--history-backend memory` (default) stores responses and conversations in-process.
- `--history-backend none` disables persistence while keeping APIs.
- `--history-backend oracle` uses Oracle Autonomous Database; provide credentials via flags or environment variables.
- Conversation item storage mirrors the history backend (Oracle or memory). The same storage powers OpenAI `/responses` and conversation APIs.

### History Backend (OpenAI Router Mode)
460
461
Store conversation and response data for tracking, debugging, or analytics.

462
> **Note:** History backends are currently supported only when running with `--backend openai`. gRPC mode support for the `/v1/responses` API is planned.
463

464
465
466
467
#### Available storage options
- **Memory** (default): In-memory storage, fast but ephemeral.
- **None**: No storage, minimal overhead.
- **Oracle**: Persistent storage backed by Oracle Autonomous Database.
468
469
470

```bash
# Memory backend (default)
471
472
473
474
python3 -m sglang_router.launch_router \
  --backend openai \
  --worker-urls https://api.openai.com \
  --history-backend memory
475
476

# No storage for maximum performance
477
478
479
480
481
482
483
484
485
486
487
python3 -m sglang_router.launch_router \
  --backend openai \
  --worker-urls https://api.openai.com \
  --history-backend none

# Oracle ATP backend (see configuration below)
python3 -m sglang_router.launch_router \
  --backend openai \
  --worker-urls https://api.openai.com \
  --history-backend oracle
```
488

489
490
491
492
#### Oracle configuration
Install the Oracle Instant Client and set `LD_LIBRARY_PATH` accordingly. Choose **one** connection method:
```bash
# Option 1: Full connection descriptor
493
494
export ATP_DSN="(description=(address=(protocol=tcps)(port=1522)(host=adb.region.oraclecloud.com))(connect_data=(service_name=service_name)))"

495
# Option 2: TNS alias (requires wallet)
496
497
export ATP_TNS_ALIAS="sglroutertestatp_high"
export ATP_WALLET_PATH="/path/to/wallet"
498
```
499
Provide database credentials and optional pool sizing:
500
```bash
501
502
503
504
export ATP_USER="admin"
export ATP_PASSWORD="YourPassword123"
export ATP_POOL_MIN=4
export ATP_POOL_MAX=32
505
506
```

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
Router flags map to these values:
- `--oracle-dsn` (env: `ATP_DSN`) or `--oracle-tns-alias` with `--oracle-wallet-path`.
- `--oracle-user` / `--oracle-password` (`ATP_USER` / `ATP_PASSWORD`).
- `--oracle-wallet-path` (`ATP_WALLET_PATH`) when using TNS alias.
- `--oracle-pool-min`, `--oracle-pool-max`, `--oracle-pool-timeout-secs`.

Only one of `--oracle-dsn` or `--oracle-tns-alias` should be supplied.

## Reliability & Flow Control
- **Retries**: Default max retries = 5 with exponential backoff (`--retry-max-retries`, `--retry-initial-backoff-ms`, `--retry-max-backoff-ms`, `--retry-backoff-multiplier`, `--retry-jitter-factor`). Retries trigger on 408/429/500/502/503/504.
- **Circuit Breakers**: Per worker thresholds (`--cb-failure-threshold`, `--cb-success-threshold`, `--cb-timeout-duration-secs`, `--cb-window-duration-secs`). Disable via `--disable-circuit-breaker`.
- **Rate Limiting**: Token bucket driven by `--max-concurrent-requests`. Set `--rate-limit-tokens-per-second` to override refill rate. Configure request queue via `--queue-size` and `--queue-timeout-secs`; queued requests observe FIFO order and respect cancellation.
- **Health Checks**: Runtime probes via `--health-check-interval-secs`, `--health-check-timeout-secs`, failure/success thresholds, and `--health-check-endpoint`.
- **Cache Management**: `/flush_cache` ensures LRU eviction when redeploying PD workers.

## Load Balancing Policies
- `random`: uniform random worker selection.
- `round_robin`: sequential rotation with atomic counters.
- `cache_aware`: maintains a prefix tree of prompts to route repeat traffic and evens load with configurable thresholds (`--cache-threshold`, `--balance-abs-threshold`, `--balance-rel-threshold`, `--eviction-interval`, `--max-tree-size`).
- `power_of_two`: chooses the lighter worker among two random candidates; integrates with `LoadMonitor`.
  Per-model overrides are available in PD mode (`--prefill-policy`, `--decode-policy`) and IGW mode via the worker registry.

## Observability
- **Logging**: Structured tracing through `tracing` with optional file sink (`--log-dir`) and `--log-level` (`debug`, `info`, `warn`, `error`).
- **Prometheus Metrics**: Enable with `--prometheus-host`/`--prometheus-port` (defaults to `0.0.0.0:29000`). Metrics cover request latency, retry behavior, circuit breaker states, worker health/load, queue depth, PD pipeline stats, tokenizer timings, and MCP activity.
- **Request IDs**: Configurable headers via `--request-id-headers`; responses include `x-request-id`.
- **CORS**: Set `--cors-allowed-origins` for browser access.

## Security

### Router and Worker API Keys
- **Router API key (`--api-key`)** protects client access to router endpoints; all protected routes expect `Authorization: Bearer <key>`.
- Workers listed in `--worker-urls` inherit the router API key automatically.
- When adding workers dynamically, provide explicit API keys via payload or query string; they do **not** inherit automatically.
541
542

```bash
543
544
545
546
# Router and initial workers share the same key
python3 -m sglang_router.launch_router \
  --api-key "shared-api-key" \
  --worker-urls http://worker1:8000 http://worker2:8000
547

548
# Adding a worker without key while router has one triggers a warning and leaves the worker unprotected
549
550
curl -X POST http://localhost:8080/add_worker?url=http://worker3:8000

551
552
# Add worker with explicit key
curl -X POST "http://localhost:8080/add_worker?url=http://worker3:8000&api_key=worker3-specific-key"
553
554
```

555
556
557
558
559
### Security Configurations
1. **No Authentication** (default): Router and workers accept requests without keys—use only in trusted environments.
2. **Router-only Authentication**: Provide `--api-key`; clients must present the key, router accesses workers without credentials.
3. **Worker-only Authentication**: Router open to clients; each worker requires its own key. Supply keys when calling `/workers` or `/add_worker`.
4. **Full Authentication**: Set router API key and provide per-worker keys. Example:
560
   ```bash
561
   python3 -m sglang_router.launch_router --api-key "router-key"
562
   curl -H "Authorization: Bearer router-key" \
563
     -X POST http://localhost:8080/add_worker?url=http://worker:8000&api_key=worker-key
564
565
   ```

566
567
568
569
### Important Notes
- Initial workers declared via CLI inherit the router key; dynamic workers must supply keys explicitly.
- Router logs a warning when a worker is registered without a key while the router expects authentication.
- When router and workers share the same key, still include the key when invoking dynamic registration APIs.
570

571
## Development & Testing
Simo Lin's avatar
Simo Lin committed
572
```bash
573
# Build Rust components (debug mode, fast)
Simo Lin's avatar
Simo Lin committed
574
575
cargo build

576
577
# Run Rust tests
cargo test
578

579
580
# Fast Python development (rebuilds and installs in debug mode)
maturin develop
581

582
583
# Run Python tests
pytest
Simo Lin's avatar
Simo Lin committed
584
```
585
For production builds, use `maturin build --release` to create optimized wheels. During development, `maturin develop` rebuilds and installs instantly without creating wheel files. Use `python -m sglang_router.launch_server` to co-launch router and SGLang workers in small clusters for local validation.
586
587

---
588

589
SGLang Model Gateway continues to evolve alongside the core SGLang runtime. Contributions should keep CLI flags, documentation, and Python bindings in sync with the Rust implementation.